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Chapter 1

Acoustics for Music Theory1

1.1 Music is Organized Sound Waves

Music is sound that's organized by people on purpose, to dance to, to tell a story, to make other people
feel a certain way, or just to sound pretty or be entertaining. Music is organized on many di�erent levels.
Sounds can be arranged into melodies2, harmonies3, rhythms4, textures5 and phrases6. Beats7, measures8,
cadences9, and form10 all help to keep the music organized and understandable. But the most basic way
that music is organized is by arranging the actual sound waves themselves so that the sounds are interesting
and pleasant and go well together.

A rhythmic, organized set of thuds and crashes is perfectly good music - think of your favorite drum solo
- but many musical instruments are designed speci�cally to produce the regular, evenly spaced sound waves
that we hear as particular pitches11. Crashes, thuds, and bangs are loud, short jumbles of lots of di�erent
wavelengths. These are the kinds of sound we often call "noise", when they're random and disorganized,
but as soon as they are organized in time (rhythm12), they begin to sound like music. (When used as a
scienti�c term, noise refers to continuous sounds that are random mixtures of di�erent wavelengths, not
shorter crashes and thuds.)

However, to get the melodic kind of sounds more often associated with music, the sound waves must
themselves be organized and regular, not random mixtures. Most of the sounds we hear are brought to our
ears through the air. A movement of an object causes a disturbance of the normal motion of the air molecules
near the object. Those molecules in turn disturb other nearby molecules out of their normal patterns of
random motion, so that the disturbance itself becomes a thing that moves through the air - a sound wave.
If the movement of the object is a fast, regular vibration, then the sound waves are also very regular. We
hear such regular sound waves as tones, sounds with a particular pitch13. It is this kind of sound that we
most often associate with music, and that many musical instruments are designed to make.

1This content is available online at <http://cnx.org/content/m13246/1.13/>.
2"Melody" <http://cnx.org/content/m11647/latest/>
3"Harmony" <http://cnx.org/content/m11654/latest/>
4"Rhythm" <http://cnx.org/content/m11646/latest/>
5"The Textures of Music" <http://cnx.org/content/m11645/latest/>
6"Melody": Section Melodic Phrases <http://cnx.org/content/m11647/latest/#s2>
7"Time Signature": Section Beats and Measures <http://cnx.org/content/m10956/latest/#s1>
8"The Sta�": Section The Sta� <http://cnx.org/content/m10880/latest/#s1>
9"Cadence in Music" <http://cnx.org/content/m12402/latest/>

10"Form in Music" <http://cnx.org/content/m10842/latest/>
11"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
12"Rhythm" <http://cnx.org/content/m11646/latest/>
13"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
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2 CHAPTER 1. ACOUSTICS FOR MUSIC THEORY

Figure 1.1: A random jumble of sound waves is heard as a noise. A regular, evenly-spaced sound wave
is heard as a tone.

Musicians have terms that they use to describe tones. (Musicians also have other meanings for the word
"tone", but this course will stick to the "a sound with pitch" meaning.) This kind of (regular, evenly spaced)
wave is useful for things other than music, however, so scientists and engineers also have terms that describe
pitched sound waves. As we talk about where music theory comes from, it will be very useful to know both
the scienti�c and the musical terms and how they are related to each other.

For example, the closer together those evenly-spaced waves are, the higher the note sounds. Musicians
talk about the pitch14 of the sound, or name speci�c notes15, or talk about tuning (Chapter 5). Scientists
and engineers, on the other hand, talk about the frequency (p. 5) and the wavelength (p. 5) of the sound.
They are all essentially talking about the same things, but talking about them in slightly di�erent ways, and
using the scienti�c ideas of wavelength and frequency can help clarify some of the main ideas underlying
music theory.

1.2 Longitudinal and Transverse Waves

So what are we talking about when we speak of sound waves? Waves are disturbances; they are changes in
something - the surface of the ocean, the air, electromagnetic �elds. Normally, these changes are travelling
(except for standing waves (Chapter 2)); the disturbance is moving away from whatever created it, in a kind
of domino e�ect.

Most kinds of waves are transverse waves. In a transverse wave, as the wave is moving in one direction,
it is creating a disturbance in a di�erent direction. The most familiar example of this is waves on the surface
of water. As the wave travels in one direction - say south - it is creating an up-and-down (not north-and-
south) motion on the water's surface. This kind of wave is fairly easy to draw; a line going from left-to-right
has up-and-down wiggles. (See Figure 1.2 (Transverse and Longitudinal Waves).)

14"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
15"Clef" <http://cnx.org/content/m10941/latest/>
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Transverse and Longitudinal Waves

Figure 1.2: In water waves and other transverse waves, the ups and downs are in a di�erent direction
from the forward movement of the wave. The "highs and lows" of sound waves and other longitudinal
waves are arranged in the "forward" direction.

But sound waves are not transverse. Sound waves are longitudinal waves. If sound waves are moving
south, the disturbance that they are creating is giving the air molecules extra north-and-south (not east-and-
west, or up-and-down) motion. If the disturbance is from a regular vibration, the result is that the molecules
end up squeezed together into evenly-spaced waves. This is very di�cult to show clearly in a diagram, so
most diagrams, even diagrams of sound waves, show transverse waves.

Longitudinal waves may also be a little di�cult to imagine, because there aren't any examples that we
can see in everyday life (unless you like to play with toy slinkies). A mathematical description might be
that in longitudinal waves, the waves (the disturbances) are along the same axis as the direction of motion
of the wave; transverse waves are at right angles to the direction of motion of the wave. If this doesn't help,
try imagining yourself as one of the particles that the wave is disturbing (a water drop on the surface of the
ocean, or an air molecule). As it comes from behind you, a transverse waves lifts you up and then drops
down; a longitudinal wave coming from behind pushes you forward and pulls you back. You can view here
animations of longitudinal and transverse waves16, single particles being disturbed by a transverse wave or
by a longitudinal wave17, and particles being disturbed by transverse and longitudinal waves18.

The result of these "forward and backward" waves is that the "high point" of a sound wave is where the
air molecules are bunched together, and the "low point" is where there are fewer air molecules. In a pitched
sound, these areas of bunched molecules are very evenly spaced. In fact, they are so even, that there are
some very useful things we can measure and say about them. In order to clearly show you what they
are, most of the diagrams in this course will show sound waves as if they are transverse waves.

1.3 Wave Amplitude and Loudness

Both transverse and longitudinal waves cause a displacement of something: air molecules, for example, or
the surface of the ocean. The amount of displacement at any particular spot changes as the wave passes.
If there is no wave, or if the spot is in the same state it would be in if there was no wave, there is no
displacement. Displacement is biggest (furthest from "normal") at the highest and lowest points of the

16See the �le at <http://cnx.org/content/m13246/latest/Waves.swf>
17See the �le at <http://cnx.org/content/m13246/latest/Pulses.swf>
18See the �le at <http://cnx.org/content/m13246/latest/Translong.swf>
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4 CHAPTER 1. ACOUSTICS FOR MUSIC THEORY

wave. In a sound wave, then, there is no displacement wherever the air molecules are at a normal density.
The most displacement occurs wherever the molecules are the most crowded or least crowded.

Displacement

Figure 1.3

The amplitude of the wave is a measure of the displacement: how big is the change from no displacement
to the peak of a wave? Are the waves on the lake two inches high or two feet? Are the air molecules bunched
very tightly together, with very empty spaces between the waves, or are they barely more organized than they
would be in their normal course of bouncing o� of each other? Scientists measure the amplitude of sound
waves in decibels. Leaves rustling in the wind are about 10 decibels; a jet engine is about 120 decibels.

Musicians call the loudness of a note its dynamic level. Forte (pronounced "FOR-tay") is a loud
dynamic level; piano is soft. Dynamic levels don't correspond to a measured decibel level. An orchestra
playing "fortissimo" (which basically means "even louder than forte") is going to be quite a bit louder than a
string quartet playing "fortissimo". (See Dynamics19 for more of the terms that musicians use to talk about
loudness.) Dynamics are more of a performance issue than a music theory issue, so amplitude doesn't need
much discussion here.

Amplitude is Loudness

Figure 1.4: The size of a wave (how much it is "piled up" at the high points) is its amplitude. For
sound waves, the bigger the amplitude, the louder the sound.

19"Dynamics and Accents in Music" <http://cnx.org/content/m11649/latest/>
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1.4 Wavelength, Frequency, and Pitch

The aspect of evenly-spaced sound waves that really a�ects music theory is the spacing between the waves,
the distance between, for example, one high point and the next high point. This is the wavelength, and it
a�ects the pitch20 of the sound; the closer together the waves are, the higher the tone sounds.

All sound waves are travelling at about the same speed - the speed of sound. So waves with a shorter
wavelength arrive (at your ear, for example) more often (frequently) than longer waves. This aspect of a
sound - how often a peak of a wave goes by, is called frequency by scientists and engineers. They measure
it in hertz, which is how many peaks go by per second. People can hear sounds that range from about 20
to about 17,000 hertz.

Wavelength, Frequency, and Pitch

Figure 1.5: Since the sounds are travelling at about the same speed, the one with the shorter wavelength
"waves" more frequently; it has a higher frequency, or pitch. In other words, it sounds higher.

The word that musicians use for frequency is pitch. The shorter the wavelength, the higher the frequency,
and the higher the pitch, of the sound. In other words, short waves sound high; long waves sound low. Instead
of measuring frequencies, musicians name the pitches21 that they use most often. They might call a note
"middle C" or "second line G" or "the F sharp in the bass clef". (See Octaves and Diatonic Music (Chapter 4)
and Tuning Systems (Chapter 5) for more on naming speci�c frequencies.) These notes have frequencies
(Have you heard of the "A 440" that is used as a tuning note?), but the actual frequency of a middle C can
vary a little from one orchestra, piano, or performance, to another, so musicians usually �nd it more useful
to talk about note names.

Most musicians cannot name the frequencies of any notes other than the tuning A (440 hertz). The
human ear can easily distinguish two pitches that are only one hertz apart when it hears them both, but it is
the very rare musician who can hear speci�cally that a note is 442 hertz rather than 440. So why should we
bother talking about frequency, when musicians usually don't? As we will see, the physics of sound waves
- and especially frequency - a�ects the most basic aspects of music, including pitch22, tuning (Chapter 5),

20"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
21"Clef" <http://cnx.org/content/m10941/latest/>
22"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
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6 CHAPTER 1. ACOUSTICS FOR MUSIC THEORY

consonance and dissonance23, harmony24, and timbre25.

23"Consonance and Dissonance" <http://cnx.org/content/m11953/latest/>
24"Harmony" <http://cnx.org/content/m11654/latest/>
25"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>

Available for free at Connexions <http://cnx.org/content/col10338/1.1>



Chapter 2

Standing Waves and Musical

Instruments1

2.1 What is a Standing Wave?

Musical tones (p. 7) are produced by musical instruments, or by the voice, which, from a physics perspective,
is a very complex wind2 instrument. So the physics of music is the physics of the kinds of sounds these
instruments can make. What kinds of sounds are these? They are tones caused by standing waves produced
in or on the instrument. So the properties of these standing waves, which are always produced in very speci�c
groups, or series, have far-reaching e�ects on music theory.

Most sound waves, including the musical sounds that actually reach our ears, are not standing waves.
Normally, when something makes a wave, the wave travels outward, gradually spreading out and losing
strength, like the waves moving away from a pebble dropped into a pond.

But when the wave encounters something, it can bounce (re�ection) or be bent (refraction). In fact, you
can "trap" waves by making them bounce back and forth between two or more surfaces. Musical instruments
take advantage of this; they produce pitches3 by trapping sound waves.

Why are trapped waves useful for music? Any bunch of sound waves will produce some sort of noise. But
to be a tone - a sound with a particular pitch4 - a group of sound waves has to be very regular, all exactly
the same distance apart. That's why we can talk about the frequency (p. 5) and wavelength (p. 5) of tones.

1This content is available online at <http://cnx.org/content/m12413/1.15/>.
2"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/>
3"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
4"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>

Available for free at Connexions <http://cnx.org/content/col10338/1.1>
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8 CHAPTER 2. STANDING WAVES AND MUSICAL INSTRUMENTS

Figure 2.1: A noise is a jumble of sound waves. A tone is a very regular set of waves, all the same size
and same distance apart.

So how can you produce a tone? Let's say you have a sound wave trap (for now, don't worry about what
it looks like), and you keep sending more sound waves into it. Picture a lot of pebbles being dropped into a
very small pool. As the waves start re�ecting o� the edges of the pond, they interfere with the new waves,
making a jumble of waves that partly cancel each other out and mostly just roils the pond - noise.

But what if you could arrange the waves so that re�ecting waves, instead of cancelling out the new waves,
would reinforce them? The high parts of the re�ected waves would meet the high parts of the oncoming
waves and make them even higher. The low parts of the re�ected waves would meet the low parts of the
oncoming waves and make them even lower. Instead of a roiled mess of waves cancelling each other out, you
would have a pond of perfectly ordered waves, with high points and low points appearing regularly at the
same spots again and again. To help you imagine this, here are animations of a single wave re�ecting back
and forth5 and standing waves6.

This sort of orderliness is actually hard to get from water waves, but relatively easy to get in sound
waves, so that several completely di�erent types of sound wave "containers" have been developed into
musical instruments. The two most common - strings and hollow tubes - will be discussed below, but �rst
let's �nish discussing what makes a good standing wave container, and how this a�ects music theory.

In order to get the necessary constant reinforcement, the container has to be the perfect size (length)
for a certain wavelength, so that waves bouncing back or being produced at each end reinforce each other,
instead of interfering with each other and cancelling each other out. And it really helps to keep the container
very narrow, so that you don't have to worry about waves bouncing o� the sides and complicating things.
So you have a bunch of regularly-spaced waves that are trapped, bouncing back and forth in a container
that �ts their wavelength perfectly. If you could watch these waves, it would not even look as if they are
traveling back and forth. Instead, waves would seem to be appearing and disappearing regularly at exactly
the same spots, so these trapped waves are called standing waves.

note: Although standing waves are harder to get in water, the phenomenon does apparently
happen very rarely in lakes, resulting in freak disasters. You can sometimes get the same e�ect by
pushing a tub of water back and forth, but this is a messy experiment; you'll know you are getting
a standing wave when the water suddenly starts sloshing much higher - right out of the tub!

For any narrow "container" of a particular length, there are plenty of possible standing waves that
don't �t. But there are also many standing waves that do �t. The longest wave that �ts it is called
the fundamental. It is also called the �rst harmonic. The next longest wave that �ts is the second

5See the �le at <http://cnx.org/content/m12413/latest/Re�ectingWave.swf>
6See the �le at <http://cnx.org/content/m12413/latest/WaterWaves.swf>

Available for free at Connexions <http://cnx.org/content/col10338/1.1>
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harmonic, or the �rst overtone. The next longest wave is the third harmonic, or second overtone,
and so on.

Standing Wave Harmonics

Figure 2.2: There is a whole set of standing waves, called harmonics, that will �t into any "container"
of a speci�c length. This set of waves is called a harmonic series.

Notice that it doesn't matter what the length of the fundamental is; the waves in the second harmonic
must be half the length of the �rst harmonic; that's the only way they'll both "�t". The waves of the third
harmonic must be a third the length of the �rst harmonic, and so on. This has a direct e�ect on the frequency
and pitch of harmonics, and so it a�ects the basics of music tremendously. To �nd out more about these
subjects, please see Frequency, Wavelength, and Pitch7, Harmonic Series (Chapter 3), or Musical Intervals,
Frequency, and Ratio8.

2.2 Standing Waves on Strings

You may have noticed an interesting thing in the animation (p. 8) of standing waves: there are spots where
the "water" goes up and down a great deal, and other spots where the "water level" doesn't seem to move
at all. All standing waves have places, called nodes, where there is no wave motion, and antinodes, where
the wave is largest. It is the placement of the nodes that determines which wavelengths "�t" into a musical
instrument "container".

7"Frequency, Wavelength, and Pitch" <http://cnx.org/content/m11060/latest/>
8"Musical Intervals, Frequency, and Ratio" <http://cnx.org/content/m11808/latest/>

Available for free at Connexions <http://cnx.org/content/col10338/1.1>



10 CHAPTER 2. STANDING WAVES AND MUSICAL INSTRUMENTS

Nodes and Antinodes

Figure 2.3: As a standing wave waves back and forth (from the red to the blue position), there are
some spots called nodes that do not move at all; basically there is no change, no waving up-and-down
(or back-and-forth), at these spots. The spots at the biggest part of the wave - where there is the most
change during each wave - are called antinodes.

One "container" that works very well to produce standing waves is a thin, very taut string that is held
tightly in place at both ends. Since the string is taut, it vibrates quickly, producing sound waves, if you
pluck it, or rub it with a bow. Since it is held tightly at both ends, that means there has to be a node (p. 9)
at each end of the string. Instruments that produce sound using strings are called chordophones9, or simply
strings10.

9"Classifying Musical Instruments": Section Chordophones <http://cnx.org/content/m11896/latest/#s21>
10"Orchestral Instruments": Section Strings <http://cnx.org/content/m11897/latest/#s11>

Available for free at Connexions <http://cnx.org/content/col10338/1.1>
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Standing Waves on a String

Figure 2.4: A string that's held very tightly at both ends can only vibrate at very particular wavelengths.
The whole string can vibrate back and forth. It can vibrate in halves, with a node at the middle of the
string as well as each end, or in thirds, fourths, and so on. But any wavelength that doesn't have a
node at each end of the string, can't make a standing wave on the string. To get any of those other
wavelengths, you need to change the length of the vibrating string. That is what happens when the
player holds the string down with a �nger, changing the vibrating length of the string and changing
where the nodes are.

The fundamental (p. 8) wave is the one that gives a string its pitch11. But the string is making all
those other possible vibrations, too, all at the same time, so that the actual vibration of the string is pretty
complex. The other vibrations (the ones that basically divide the string into halves, thirds and so on)
produce a whole series of harmonics. We don't hear the harmonics as separate notes, but we do hear them.
They are what gives the string its rich, musical, string-like sound - its timbre12. (The sound of a single
frequency alone is a much more mechanical, uninteresting, and unmusical sound.) To �nd out more about
harmonics and how they a�ect a musical sound, see Harmonic Series (Chapter 3).

Exercise 2.1 (Solution on p. 16.)

When the string player puts a �nger down tightly on the string,

1. How has the part of the string that vibrates changed?
2. How does this change the sound waves that the string makes?

11"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
12"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>

Available for free at Connexions <http://cnx.org/content/col10338/1.1>



12 CHAPTER 2. STANDING WAVES AND MUSICAL INSTRUMENTS

3. How does this change the sound that is heard?

2.3 Standing Waves in Wind Instruments

The string disturbs the air molecules around it as it vibrates, producing sound waves in the air. But another
great container for standing waves actually holds standing waves of air inside a long, narrow tube. This
type of instrument is called an aerophone13, and the most well-known of this type of instrument are often
called wind instruments14 because, although the instrument itself does vibrate a little, most of the sound is
produced by standing waves in the column of air inside the instrument.

If it is possible, have a reed player and a brass player demonstrate to you the sounds that their mouthpieces
make without the instrument. This will be a much "noisier" sound, with lots of extra frequencies in it that
don't sound very musical. But, when you put the mouthpiece on an instrument shaped like a tube, only
some of the sounds the mouthpiece makes are the right length for the tube. Because of feedback from the
instrument, the only sound waves that the mouthpiece can produce now are the ones that are just the right
length to become standing waves in the instrument, and the "noise" is re�ned into a musical tone.

13"Classifying Musical Instruments": Section Aerophones <http://cnx.org/content/m11896/latest/#s22>
14"Orchestral Instruments": Section The Sections of the Orchestra <http://cnx.org/content/m11897/latest/#s1>

Available for free at Connexions <http://cnx.org/content/col10338/1.1>
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Standing Waves in Wind Instruments

Figure 2.5: Standing Waves in a wind instrument are usually shown as displacement waves, with nodes
at closed ends where the air cannot move back-and-forth.

The standing waves in a wind instrument are a little di�erent from a vibrating string. The wave on a
string is a transverse wave, moving the string back and forth, rather than moving up and down along the
string. But the wave inside a tube, since it is a sound wave already, is a longitudinal wave; the waves do
not go from side to side in the tube. Instead, they form along the length of the tube.

Available for free at Connexions <http://cnx.org/content/col10338/1.1>



14 CHAPTER 2. STANDING WAVES AND MUSICAL INSTRUMENTS

Longitudinal Waves in Pipes

Figure 2.6: The standing waves in the tubes are actually longitudinal sound waves. Here the dis-
placement standing waves in Figure 2.5 (Standing Waves in Wind Instruments) are shown instead as
longitudinal air pressure waves. Each wave would be oscillating back and forth between the state on the
right and the one on the left. See Standing Waves in Wind Instruments15 for more explanation.

The harmonics of wind instruments are also a little more complicated, since there are two basic shapes
(cylindrical16 and conical17) that are useful for wind instruments, and they have di�erent properties. The
standing-wave tube of a wind instrument also may be open at both ends, or it may be closed at one end
(for a mouthpiece, for example), and this also a�ects the instrument. Please see Standing Waves in Wind
Instruments18 if you want more information on that subject. For the purposes of understanding music
theory, however, the important thing about standing waves in winds is this: the harmonic series they
produce is essentially the same as the harmonic series on a string. In other words, the second harmonic is
still half the length of the fundamental, the third harmonic is one third the length, and so on. (Actually, for
reasons explained in Standing Waves in Wind Instruments19, some harmonics are "missing" in some wind
instruments, but this mainly a�ects the timbre20 and some aspects of playing the instrument. It does not
a�ect the basic relationships in the harmonic series.)

15"Standing Waves and Wind Instruments" <http://cnx.org/content/m12589/latest/>
16"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/#p1c>
17"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/#p1c>
18"Standing Waves and Wind Instruments" <http://cnx.org/content/m12589/latest/>
19"Standing Waves and Wind Instruments" <http://cnx.org/content/m12589/latest/>
20"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
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2.4 Standing Waves in Other Objects

So far we have looked at two of the four main groups of musical instruments: chordophones and aerophones.
That leaves membranophones21 and idiophones22. Membranophones are instruments in which the sound
is produced by making a membrane vibrate; drums are the most familiar example. Most drums do not
produce tones; they produce rhythmic "noise" (bursts of irregular waves). Some drums do have pitch23, due
to complex-patterned standing waves on the membrane that are reinforced in the space inside the drum.
This works a little bit like the waves in tubes, above, but the waves produced on membranes, though very
interesting, are too complex to be discussed here.

Idiophones are instruments in which the body of the instrument itself, or a part of it, produces the
original vibration. Some of these instruments (cymbals, for example) produce simple noise-like sounds when
struck. But in some, the shape of the instrument - usually a tube, block, circle, or bell shape - allows
the instrument to ring with a standing-wave vibration when you strike it. The standing waves in these
carefully-shaped-and-sized idiophones - for example, the blocks on a xylophone - produce pitched tones, but
again, the patterns of standing waves in these instruments are a little too complicated for this discussion.
If a percussion instrument does produce pitched sounds, however, the reason, again, is that it is mainly
producing harmonic-series overtones (Chapter 3).

note: Although percussion24 specializes in "noise"-type sounds, even instruments like snare drums
follow the basic physics rule of "bigger instrument makes longer wavelengths and lower sounds".
If you can, listen to a percussion player or section that is using snare drums, cymbals, or other
percussion of the same type but di�erent sizes. Can you hear the di�erence that size makes, as
opposed to di�erences in timbre25 produced by di�erent types of drums?

Exercise 2.2 (Solution on p. 16.)

Some idiophones, like gongs, ring at many di�erent pitches when they are struck. Like most drums,
they don't have a particular pitch, but make more of a "noise"-type sound. Other idiophones,
though, like xylophones, are designed to ring at more particular frequencies. Can you think of some
other percussion instruments that get particular pitches? (Some can get enough di�erent pitches
to play a tune.)

21"Classifying Musical Instruments": Section Membranophones <http://cnx.org/content/m11896/latest/#s23>
22"Classifying Musical Instruments": Section Idiophones <http://cnx.org/content/m11896/latest/#s24>
23"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
24"Orchestral Instruments": Section Percussion <http://cnx.org/content/m11897/latest/#s14>
25"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
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16 CHAPTER 2. STANDING WAVES AND MUSICAL INSTRUMENTS

Solutions to Exercises in Chapter 2

Solution to Exercise 2.1 (p. 11)

1. The part of the string that can vibrate is shorter. The �nger becomes the new "end" of the string.
2. The new sound wave is shorter, so its frequency is higher.
3. It sounds higher; it has a higher pitch.

Figure 2.7: When a �nger holds the string down tightly, the �nger becomes the new end of the vibrating
part of the string. The vibrating part of the string is shorter, and the whole set of sound waves it makes
is shorter.

Solution to Exercise 2.2 (p. 15)

There are many, but here are some of the most familiar:

• Chimes
• All xylophone-type instruments, such as marimba, vibraphone, and glockenspiel
• Handbells and other tuned bells
• Steel pan drums

Available for free at Connexions <http://cnx.org/content/col10338/1.1>



Chapter 3

Harmonic Series1

3.1 Introduction

Have you ever wondered how a trumpet2 plays so many di�erent notes with only three valves3, or how
a bugle plays di�erent notes with no valves at all? Have you ever wondered why an oboe4 and a �ute5

sound so di�erent, even when they're playing the same note? What is a string player doing when she plays
"harmonics"? Why do some notes sound good together while other notes seem to clash with each other?
The answers to all of these questions will become clear with an understanding of the harmonic series.

3.2 Physics, Harmonics and Color

Most musical notes are sounds that have a particular pitch6. The pitch depends on the main frequency7 of
the sound; the higher the frequency, and shorter the wavelength, of the sound waves, the higher the pitch
is. But musical sounds don't have just one frequency. Sounds that have only one frequency are not very
interesting or pretty. They have no more musical color8 than the beeping of a watch alarm. On the other
hand, sounds that have too many frequencies, like the sound of glass breaking or of ocean waves crashing
on a beach, may be interesting and even pleasant. But they don't have a particular pitch, so they usually
aren't considered musical notes.

1This content is available online at <http://cnx.org/content/m11118/2.19/>.
2"Trumpets and Cornets" <http://cnx.org/content/m12606/latest/>
3"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/#p2f>
4"The Oboe and its Relatives" <http://cnx.org/content/m12615/latest/>
5"Flutes" <http://cnx.org/content/m12603/latest/>
6"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
7"Frequency, Wavelength, and Pitch", Figure 1: Wavelength, Frequency, and Pitch

<http://cnx.org/content/m11060/latest/#�g1b>
8"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
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18 CHAPTER 3. HARMONIC SERIES

Frequency and Pitch

Figure 3.1: The higher the frequency, the higher the note sounds.

When someone plays or sings a note, only a very particular set of frequencies is heard. Imagine that each
note that comes out of the instrument is a smooth mixture of many di�erent pitches. These di�erent pitches
are called harmonics, and they are blended together so well that you do not hear them as separate notes
at all. Instead, the harmonics give the note its color.

What is the color9 of a sound? Say an oboe plays a middle C. Then a �ute plays the same note at the
same loudness as the oboe. It is still easy to tell the two notes apart, because an oboe sounds di�erent
from a �ute. This di�erence in the sounds is the color, or timbre (pronounced "TAM-ber") of the notes.
Like a color you see, the color of a sound can be bright and bold or deep and rich. It can be heavy, light,
murky, thin, smooth, or transparently clear. Some other words that musicians use to describe the timbre of
a sound are: reedy, brassy, piercing, mellow, thin, hollow, focussed, breathy (pronounced BRETH-ee) or full.
Listen to recordings of a violin10 and a viola11. Although these instruments are quite similar, the viola has
a noticeably "deeper" and the violin a noticeably "brighter" sound that is not simply a matter of the violin
playing higher notes. Now listen to the same phrase played by an electric guitar12, an acoustic guitar with
twelve steel strings13 and an acoustic guitar with six nylon strings14. The words musicians use to describe
timbre are somewhat subjective, but most musicians would agree with the statement that, compared with
each other, the �rst sound is mellow, the second bright, and the third rich.

Exercise 3.1 (Solution on p. 27.)

Listen to recordings of di�erent instruments playing alone or playing very prominently above
a group. Some suggestions: an unaccompanied violin or cello sonata, a �ute, oboe, trumpet, or
horn concerto, native American �ute music, classical guitar, bagpipes, steel pan drums, panpipes,

9"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
10See the �le at <http://cnx.org/content/m11118/latest/timvl.mp3>
11See the �le at <http://cnx.org/content/m11118/latest/timvla.mp3>
12See the �le at <http://cnx.org/content/m11118/latest/electricGUITARS.wav>
13See the �le at <http://cnx.org/content/m11118/latest/12stringGUITARS.wav>
14See the �le at <http://cnx.org/content/m11118/latest/nylonGUITARS.wav>
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or organ. For each instrument, what "color" words would you use to describe the timbre of each
instrument? Use as many words as you can that seem appropriate, and try to think of some that
aren't listed above. Do any of the instruments actually make you think of speci�c shades of color,
like �re-engine red or sky blue?

Where do the harmonics, and the timbre, come from? When a string vibrates, the main pitch you hear is
from the vibration of the whole string back and forth. That is the fundamental, or �rst harmonic. But
the string also vibrates in halves, in thirds, fourths, and so on. Each of these fractions also produces a
harmonic. The string vibrating in halves produces the second harmonic; vibrating in thirds produces the
third harmonic, and so on.

note: This method of naming and numbering harmonics is the most straightforward and least
confusing, but there are other ways of naming and numbering harmonics, and this can cause confu-
sion. Some musicians do not consider the fundamental to be a harmonic; it is just the fundamental.
In that case, the string halves will give the �rst harmonic, the string thirds will give the second
harmonic and so on. When the fundamental is included in calculations, it is called the �rst partial,
and the rest of the harmonics are the second, third, fourth partials and so on. Also, some musicians
use the term overtones as a synonym for harmonics. For others, however, an overtone is any
frequency (not necessarily a harmonic) that can be heard resonating with the fundamental. The
sound of a gong or cymbals will include overtones that aren't harmonics; that's why the gong's
sound doesn't seem to have as de�nite a pitch as the vibrating string does. If you are uncertain
what someone means by the second harmonic or by the term overtones, ask for clari�cation.

Vibrating String

Figure 3.2: The fundamental pitch is produced by the whole string vibrating back and forth. But the
string is also vibrating in halves, thirds, quarters, �fths, and so on, producing harmonics. All of these
vibrations happen at the same time, producing a rich, complex, interesting sound.

A column of air vibrating inside a tube is di�erent from a vibrating string, but the column of air can
also vibrate in halves, thirds, fourths, and so on, of the fundamental, so the harmonic series will be the
same. So why do di�erent instruments have di�erent timbres? The di�erence is the relative loudness of all
the di�erent harmonics compared to each other. When a clarinet15 plays a note, perhaps the odd-numbered

15"Clarinets" <http://cnx.org/content/m12604/latest/>
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20 CHAPTER 3. HARMONIC SERIES

harmonics are strongest; when a French horn16 plays the same notes, perhaps the �fth and tenth harmonics
are the strongest. This is what you hear that allows you to recognize that it is a clarinet or horn that is
playing.

note: You will �nd some more extensive information on instruments and harmonics in Standing
Waves and Musical Instruments (Chapter 2) and Standing Waves and Wind Instruments17.

3.3 The Harmonic Series

A harmonic series can have any note as its fundamental, so there are many di�erent harmonic series. But
the relationship between the frequencies18 of a harmonic series is always the same. The second harmonic
always has exactly half the wavelength (and twice the frequency) of the fundamental; the third harmonic
always has exactly a third of the wavelength (and so three times the frequency) of the fundamental, and so
on. For more discussion of wavelengths and frequencies, see Frequency, Wavelength, and Pitch19.

16"The French Horn" <http://cnx.org/content/m11617/latest/>
17"Standing Waves and Wind Instruments" <http://cnx.org/content/m12589/latest/>
18"Frequency, Wavelength, and Pitch", Figure 1: Wavelength, Frequency, and Pitch

<http://cnx.org/content/m11060/latest/#�g1b>
19"Frequency, Wavelength, and Pitch" <http://cnx.org/content/m11060/latest/>
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Harmonic Series Wavelengths and Frequencies

Figure 3.3: The second harmonic has half the wavelength and twice the frequency of the �rst. The third
harmonic has a third the wavelength and three times the frequency of the �rst. The fourth harmonic
has a quarter the wavelength and four times the frequency of the �rst, and so on. Notice that the fourth
harmonic is also twice the frequency of the second harmonic, and the sixth harmonic is also twice the
frequency of the third harmonic.

Say someone plays a note, a middle C. Now someone else plays the note that is twice the frequency of
the middle C. Since this second note was already a harmonic of the �rst note, the sound waves of the two
notes reinforce each other and sound good together. If the second person played instead the note that was
just a litle bit more than twice the frequency of the �rst note, the harmonic series of the two notes would
not �t together at all, and the two notes would not sound as good together. There are many combinations
of notes that share some harmonics and make a pleasant sound together. They are considered consonant20.
Other combinations share fewer or no harmonics and are considered dissonant21 or, when they really clash,
simply "out of tune" with each other. The scales and chords of most of the world's musics are based on
these physical facts.

note: In real music, consonance and dissonance also depend on the standard practices of a musical
tradition, especially its harmony practices, but these are also often related to the harmonic series.

For example, a note that is twice the frequency of another note is one octave (Chapter 4) higher than
the �rst note. So in the �gure above, the second harmonic is one octave higher than the �rst; the fourth
harmonic is one octave higher than the second; and the sixth harmonic is one octave higher than the third.

20"Consonance and Dissonance" <http://cnx.org/content/m11953/latest/>
21"Consonance and Dissonance" <http://cnx.org/content/m11953/latest/>
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Exercise 3.2 (Solution on p. 27.)

1. Which harmonic will be one octave higher than the fourth harmonic?
2. Predict the next four sets of octaves in a harmonic series.
3. What is the pattern that predicts which notes of a harmonic series will be one octave apart?
4. Notes one octave apart are given the same name. So if the �rst harmonic is a "A", the second

and fourth will also be A's. Name three other harmonics that will also be A's.

A mathematical way to say this is "if two notes are an octave apart, the ratio22 of their frequencies is two
to one (2:1)". Although the notes themselves can be any frequency, the 2:1 ratio is the same for all octaves.
And all the other intervals23 that musicians talk about can also be described as being particular ratios of
frequencies.

A Harmonic Series Written as Notes

Figure 3.4

Take the third harmonic, for example. Its frequency is three times the �rst harmonic (ratio 3:1). Re-
member, the frequency of the second harmonic is two times that of the �rst harmonic. So the ratio24 of the
frequencies of the second to the third harmonics is 2:3. From the harmonic series shown above, you can see
that the interval25 between these two notes is a perfect �fth26. The ratio of the frequencies of all perfect
�fths is 2:3.

Exercise 3.3 (Solution on p. 27.)

1. The interval between the fourth and sixth harmonics (frequency ratio 4:6) is also a �fth. Can
you explain this?

2. What other harmonics have an interval of a �fth?
3. Which harmonics have an interval of a fourth?
4. What is the frequency ratio for the interval of a fourth?

note: If you have been looking at the harmonic series above closely, you may have noticed that
some notes that are written to give the same interval have di�erent frequency ratios. For example,
the interval between the seventh and eighth harmonics is a major second, but so are the intervals
between 8 and 9, between 9 and 10, and between 10 and 11. But 7:8, 8:9, 9:10, and 10:11, although

22"Musical Intervals, Frequency, and Ratio" <http://cnx.org/content/m11808/latest/>
23"Interval" <http://cnx.org/content/m10867/latest/>
24"Musical Intervals, Frequency, and Ratio" <http://cnx.org/content/m11808/latest/>
25"Interval" <http://cnx.org/content/m10867/latest/>
26"Interval": Section Perfect Intervals <http://cnx.org/content/m10867/latest/#s21>
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they are pretty close, are not exactly the same. In fact, modern Western27 music uses the equal
temperament (Section 5.3.2: Equal Temperament) tuning system, which divides the octave into
twelve notes that are spaced equally far apart. The positive aspect of equal temperament (and the
reason it is used) is that an instrument will be equally in tune in all keys. The negative aspect
is that it means that all intervals except for octaves are slightly out of tune with regard to the
actual harmonic series. For more about equal temperament, see Tuning Systems (Section 5.3:
Temperament). Interestingly, musicians have a tendency to revert to true harmonics when they
can (in other words, when it is easy to �ne-tune each note). For example, an a capella choral group
or a brass ensemble, may �nd themselves singing or playing perfect fourths and �fths, "contracted"
major thirds and "expanded" minor thirds.

3.4 Brass Instruments

The harmonic series is particularly important for brass instruments. A pianist or xylophone player only gets
one note from each key. A string player who wants a di�erent note from a string holds the string tightly in
a di�erent place. This basically makes a vibrating string of a new length, with a new fundamental.

But a brass player, without changing the length of the instrument, gets di�erent notes by actually playing
the harmonics of the instrument. Woodwinds also do this, although not as much. Most woodwinds can get
two di�erent octaves with essentially the same �ngering; the lower octave is the fundamental of the column
of air inside the instrument at that �ngering. The upper octave is the �rst harmonic.

But it is the brass instruments that excel in getting di�erent notes from the same length of tubing. The
sound of a brass instruments starts with vibrations of the player's lips. By vibrating the lips at di�erent
speeds, the player can cause a harmonic of the air column to sound instead of the fundamental.

So a bugle player can play any note in the harmonic series of the instrument that falls within the player's
range. Compare these well-known bugle calls to the harmonic series above (Figure 3.4: A Harmonic Series
Written as Notes).

27"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/>
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Bugle Calls

Figure 3.5: Although limited by the fact that it can only play one harmonic series, the bugle can still
play many well-known tunes.

For centuries, all brass instruments were valveless. A brass instrument could play only the notes of one
harmonic series. The upper octaves of the series, where the notes are close together, could be di�cult or
impossible to play, and some of the harmonics sound quite out of tune to ears that expect equal temperament.
The solution to these problems, once brass valves were perfected, was to add a few valves to the instrument.
Three is usually enough. Each valve opens an extra length of tube, making the instrument a little longer,
and making available a whole new harmonic series. Usually one valve gives the harmonic series one half
step lower than the valveless intrument, another one whole step lower, and another one and a half steps
lower. The valves can be used at the same time, too, making even more harmonic series. So a valved brass
instrument can �nd, in the comfortable middle of its range (its middle register), a valve combination that
will give a reasonably in-tune version for every note of the chromatic scale28. (For more on the history of
valved brass, see History of the French Horn29. For more on how and why harmonics are produced in wind
instruments, please see Standing Waves and Wind Instruments30)

note: Trombones use a slide instead of valves to make their instrument longer. But the basic
principle is still the same. At each slide "position", the instrument gets a new harmonic series. The
notes in between the positions aren't part of the chromatic scale, so they are usually only used for
special e�ects like glissandos (sliding notes).

28"Half Steps and Whole Steps" <http://cnx.org/content/m10866/latest/#p0bb>
29"The French Horn": Section History <http://cnx.org/content/m11617/latest/#s2>
30"Standing Waves and Wind Instruments" <http://cnx.org/content/m12589/latest/>
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Overlapping Harmonic Series in Brass Instruments

Figure 3.6: These harmonic series are for a brass instrument that has a "C" fundamental when no
valves are being used - for example, a C trumpet. Remember, there is an entire harmonic series for every
fundamental, and any note can be a fundamental. You just have to �nd the brass tube with the right
length. So a trumpet or tuba can get one harmonic series using no valves, another one a half step lower
using one valve, another one a whole step lower using another valve, and so on. By the time all the
combinations of valves are used, there is some way to get an in-tune version of every note they need.

Exercise 3.4 (Solution on p. 27.)

Write the harmonic series for the instrument above when both the �rst and second valves are
open. (You can use this PDF �le31 if you need sta� paper.) What new notes are added in the
instrument's middle range? Are any notes still missing?

note: The French horn32 has a reputation for being a "di�cult" instrument to play. This is also
because of the harmonic series. Most brass instruments play in the �rst few octaves of the harmonic
series, where the notes are farther apart and it takes a pretty big di�erence in the mouth and lips
(the embouchure33, pronounced AHM-buh-sher) to get a di�erent note. The range of the French

31See the �le at <http://cnx.org/content/m11118/latest/sta�paper1.pdf>
32"The French Horn" <http://cnx.org/content/m11617/latest/>
33"Wind Instruments: Some Basics" <http://cnx.org/content/m12364/latest/#p2a>
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horn is higher in the harmonic series, where the notes are closer together. So very small di�erences
in the mouth and lips can mean the wrong harmonic comes out.

3.5 Playing Harmonics on Strings

String players also use harmonics, although not as much as brass players. Harmonics on strings have a very
di�erent timbre34 from ordinary string sounds. They give a quieter, thinner, more bell-like tone, and are
usually used as a kind of ear-catching-special-e�ect.

Normally when a string player puts a �nger on a string, he holds it down tight. This basically forms a
(temporarily) shorter vibrating string, which then produces an entire harmonic series, with a shorter (higher)
fundamental.

In order to play a harmonic, he touches the string very, very lightly instead. So the length of the string
does not change. Instead, the light touch interferes with all of the vibrations that don't have a node at that
spot. (A node is a place in the wave where the string does not move back-and-forth. For example, the ends
of the string are both nodes, since they are held in place.)

String Harmonics

Figure 3.7

The thinner, quieter sound of "playing harmonics" is caused by the fact that much of the harmonic series
is missing from the sound, which will of course be heard in the timbre (p. 18). Lightly touching the string
in most spots will result in no sound at all. It only works at the precise spots that will leave some of the
main harmonics (the longer, louder, lower-numbered ones) free to vibrate.

34"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
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Solutions to Exercises in Chapter 3

Solution to Exercise 3.1 (p. 18)
Although trained musicians will generally agree that a particular sound is reedy, thin, or full, there are no
hard-and-fast right-and-wrong answers to this exercise.
Solution to Exercise 3.2 (p. 22)

1. The eighth harmonic
2. The �fth and tenth harmonics; the sixth and twelfth harmonics; the seventh and fourteenth harmonics;

and the eighth and sixteenth harmonics
3. The note that is one octave higher than a harmonic is also a harmonic, and its number in the harmonic

series is twice (2 X) the number of the �rst note.
4. The eighth, sixteenth, and thirty-second harmonics will also be A's.

Solution to Exercise 3.3 (p. 22)

1. The ratio 4:6 reduced to lowest terms is 2:3. (If you are more comfortable with fractions than with
ratios, think of all the ratios as fractions instead. 2:3 is just two-thirds, and 4:6 is four-sixths. Four-
sixths reduces to two-thirds.)

2. Six and nine (6:9 also reduces to 2:3); eight and twelve; ten and �fteen; and any other combination
that can be reduced to 2:3 (12:18, 14:21 and so on).

3. Harmonics three and four; six and eight; nine and twelve; twelve and sixteen; and so on.
4. 3:4

Solution to Exercise 3.4 (p. 25)
Opening both �rst and second valves gives the harmonic series one-and-a-half steps lower than "no valves".

Figure 3.8
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Chapter 4

Octaves and the Major-Minor Tonal

System1

4.1 Where Octaves Come From

Musical notes, like all sounds, are made of sound waves. The sound waves that make musical notes are very
evenly-spaced waves, and the qualities of these regular waves - for example how big they are or how far apart
they are - a�ect the sound of the note. A note can be high or low, depending on how often (how frequently)
one of its waves arrives at your ear. When scientists and engineers talk about how high or low a sound is,
they talk about its frequency2. The higher the frequency of a note, the higher it sounds. They can measure
the frequency of notes, and like most measurements, these will be numbers, like "440 vibrations per second."

1This content is available online at <http://cnx.org/content/m10862/2.25/>.
2"Frequency, Wavelength, and Pitch" <http://cnx.org/content/m11060/latest/#p1e>
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High and Low Frequencies

Figure 4.1: A sound that has a shorter wavelength has a higher frequency and a higher pitch.

But people have been making music and talking about music since long before we knew that sounds were
waves with frequencies. So when musicians talk about how high or low a note sounds, they usually don't
talk about frequency; they talk about the note's pitch3. And instead of numbers, they give the notes names,
like "C". (For example, musicians call the note with frequency "440 vibrations per second" an "A".)

But to see where octaves come from, let's talk about frequencies a little more. Imagine a few men are
singing a song together. Nobody is singing harmony; they are all singing the same pitch - the same frequency
- for each note.

Now some women join in the song. They can't sing where the men are singing; that's too low for their
voices. Instead they sing notes that are exactly double the frequency that the men are singing. That means
their note has exactly two waves for each one wave that the men's note has. These two frequencies �t so well
together that it sounds like the women are singing the same notes as the men, in the same key4. They are
just singing them one octave higher. Any note that is twice the frequency of another note is one
octave higher.

Notes that are one octave apart are so closely related to each other that musicians give them the same
name. A note that is an octave higher or lower than a note named "C natural" will also be named "C natural".
A note that is one (or more) octaves higher or lower than an "F sharp" will also be an "F sharp". (For
more discussion of how notes are related because of their frequencies, see The Harmonic Series (Chapter 3),
Standing Waves and Musical Instruments (Chapter 2), and Standing Waves and Wind Instruments5.)

3"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
4"Major Keys and Scales" <http://cnx.org/content/m10851/latest/>
5"Standing Waves and Wind Instruments" <http://cnx.org/content/m12589/latest/>
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Octave Frequencies

Figure 4.2: When two notes are one octave apart, one has a frequency exactly two times higher than
the other - it has twice as many waves. These waves �t together so well, in the instrument, and in the
air, and in your ears, that they sound almost like di�erent versions of the same note.

4.2 Naming Octaves

The notes in di�erent octaves are so closely related that when musicians talk about a note, a "G" for example,
it often doesn't matter which G they are talking about. We can talk about the "F sharp" in a G major
scale6 without mentioning which octave the scale or the F sharp are in, because the scale is the same in
every octave. Because of this, many discussions of music theory don't bother naming octaves. Informally,
musicians often speak of "the B on the sta�" or the "A above the sta�", if it's clear which sta�7 they're
talking about.

But there are also two formal systems for naming the notes in a particular octave. Many musicians
use Helmholtz notation. Others prefer scienti�c pitch notation, which simply labels the octaves with
numbers, starting with C1 for the lowest C on a full-sized keyboard. Figure 3 shows the names of the octaves
most commonly used in music.

6"Major Keys and Scales" <http://cnx.org/content/m10851/latest/>
7"The Sta�" <http://cnx.org/content/m10880/latest/>
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Naming Octaves

Figure 4.3: The octaves are named from one C to the next higher C. For example, all the notes in
between "one line c" and "two line c" are "one line" notes.

The octave below contra can be labelled CCC or Co; higher octaves can be labelled with higher numbers
or more lines. Octaves are named from one C to the next higher C. For example, all the notes between
"great C" and "small C" are "great". One-line c is also often called "middle C". No other notes
are called "middle", only the C.

Example 4.1

Naming Notes within a Particular Octave

Figure 4.4: Each note is considered to be in the same octave as the C below it.

Exercise 4.1 (Solution on p. 35.)

Give the correct octave name for each note.

Available for free at Connexions <http://cnx.org/content/col10338/1.1>
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Figure 4.5

4.3 Dividing the Octave into Scales

The word "octave" comes from a Latin root meaning "eight". It seems an odd name for a frequency that is
two times, not eight times, higher. The octave was named by musicians who were more interested in how
octaves are divided into scales, than in how their frequencies are related. Octaves aren't the only notes that
sound good together. The people in di�erent musical traditions have di�erent ideas about what notes they
think sound best together. In the Western8 musical tradition - which includes most familiar music from
Europe and the Americas - the octave is divided up into twelve equally spaced notes. If you play all twelve
of these notes within one octave you are playing a chromatic scale9. Other musical traditions - traditional
Chinese music for example - have divided the octave di�erently and so they use di�erent scales. (Please see
Major Keys and Scales10, Minor Keys and Scales11, and Scales that aren't Major or Minor12 for more about
this.)

You may be thinking "OK, that's twelve notes; that still has nothing to do with the number eight", but
out of those twelve notes, only seven are used in any particular major13 or minor14 scale. Add the �rst note
of the next octave, so that you have that a "complete"-sounding scale ("do-re-mi-fa-so-la-ti" and then "do"
again), and you have the eight notes of the octave. These are the diatonic scales, and they are the basis
of most Western15 music.

Now take a look at the piano keyboard. Only seven letter names are used to name notes: A, B, C, D, E,
F, and G. The eighth note would, of course, be the next A, beginning the next octave. To name the other
notes, the notes on the black piano keys, you have to use a sharp or �at16 sign.

8"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/>
9"Half Steps and Whole Steps" <http://cnx.org/content/m10866/latest/#p0bb>

10"Major Keys and Scales" <http://cnx.org/content/m10851/latest/>
11"Minor Keys and Scales" <http://cnx.org/content/m10856/latest/>
12"Scales that are not Major or Minor" <http://cnx.org/content/m11636/latest/>
13"Major Keys and Scales" <http://cnx.org/content/m10851/latest/>
14"Minor Keys and Scales" <http://cnx.org/content/m10856/latest/>
15"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/>
16"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
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Keyboard

Figure 4.6: The white keys are the natural notes. Black keys can only be named using sharps or �ats.
The pattern repeats at the eighth tone of a scale, the octave.

Whether it is a popular song, a classical symphony, or an old folk tune, most of the music that feels
comfortable and familiar (to Western listeners) is based on either a major or minor scale. It is tonal music
that mostly uses only seven of the notes within an octave: only one of the possible A's (A sharp, A natural,
or A �at), one of the possible B's (B sharp, B natural, or B �at), and so on. The other notes in the chromatic
scale are (usually) used sparingly to add interest or to (temporarily) change the key in the middle of the
music. For more on the keys and scales that are the basis of tonal music, see Major Keys and Scales17 and
Minor Keys and Scales18.

17"Major Keys and Scales" <http://cnx.org/content/m10851/latest/>
18"Minor Keys and Scales" <http://cnx.org/content/m10856/latest/>
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Solutions to Exercises in Chapter 4

Solution to Exercise 4.1 (p. 32)

e d B f b g g d

d G AA E e a FF a

i iii ii iii

ii

Figure 4.7
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Chapter 5

Tuning Systems1

5.1 Introduction

The �rst thing musicians must do before they can play together is "tune". For musicians in the standard
Western music2 tradition, this means agreeing on exactly what pitch3 (what frequency (Section 1.4: Wave-
length, Frequency, and Pitch)) is an "A", what is a "B �at" and so on. Other cultures not only have di�erent
note names and di�erent scales, they may even have di�erent notes - di�erent pitches - based on a di�erent
tuning system. In fact, the modern Western tuning system, which is called equal temperament, replaced
(relatively recently) other tuning systems that were once popular in Europe. All tuning systems are based
on the physics of sound (Chapter 1). But they all are also a�ected by the history of their music traditions, as
well as by the tuning peculiarities of the instruments used in those traditions. Pythagorean (Section 5.2.1:
Pythagorean Intonation), mean-tone (Section 5.2.2: Mean-tone System), just intonation (Section 5.2.3: Just
Intonation), well temperaments (Section 5.3.1: Well Temperaments), equal temperament (Section 5.3.2:
Equal Temperament), and wide tuning (Section 5.5: Beats and Wide Tuning).

To understand all of the discussion below, you must be comfortable with both the musical concept of
interval and the physics concept of frequency. If you wish to follow the whole thing but are a little hazy
on the relationship between pitch and frequency, the following may be helpful: Pitch4; Acoustics for Music
Theory (Chapter 1); Harmonic Series I: Timbre and Octaves5; and Octaves and the Major-Minor Tonal
System (Chapter 4). If you do not know what intervals are (for example, major thirds and perfect fourths),
please see Interval6 and Harmonic Series II: Harmonics, Intervals and Instruments7. If you need to review the
mathematical concepts, please see Musical Intervals, Frequency, and Ratio8 and Powers, Roots, and Equal
Temperament. Meanwhile, here is a reasonably nontechnical summary of the information below: Modern
Western music uses the equal temperament (Section 5.3.2: Equal Temperament) tuning system. In this
system, an octave (Chapter 4) (say, from C to C) is divided into twelve equally-spaced notes. "Equally-
spaced" to a musician basically means that each of these notes is one half step9 from the next, and that all
half steps sound like the same size pitch change. (To a scientist or engineer, "equally-spaced" means that
the ratio of the frequencies of the two notes in any half step is always the same.) This tuning system is very
convenient for some instruments, such as the piano, and also makes it very easy to change key10 without
retuning instruments. But a careful hearing of the music, or a look at the physics of the sound waves

1This content is available online at <http://cnx.org/content/m11639/1.27/>.
2"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/>
3"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
4"Pitch: Sharp, Flat, and Natural Notes" <http://cnx.org/content/m10943/latest/>
5"Harmonic Series I: Timbre and Octaves" <http://cnx.org/content/m13682/latest/>
6"Interval" <http://cnx.org/content/m10867/latest/>
7"Harmonic Series II: Harmonics, Intervals, and Instruments" <http://cnx.org/content/m13686/latest/>
8"Musical Intervals, Frequency, and Ratio" <http://cnx.org/content/m11808/latest/>
9"Half Steps and Whole Steps" <http://cnx.org/content/m10866/latest/>

10"Major Keys and Scales" <http://cnx.org/content/m10851/latest/>
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involved, reveals that equal-temperament pitches are not based on the harmonics11 physically produced by
any musical sound. The "equal" ratios of its half steps are the twelfth root of two, rather than re�ecting
the simpler ratios produced by the sounds themselves, and the important intervals that build harmonies
can sound slightly out of tune. This often leads to some "tweaking" of the tuning in real performances,
away from equal temperament. It also leads many other music traditions to prefer tunings other than equal
temperament, particularly tunings in which some of the important intervals are based on the pure, simple-
ratio intervals of physics. In order to feature these favored intervals, a tuning tradition may do one or more
of the following: use scales in which the notes are not equally spaced; avoid any notes or intervals which
don't work with a particular tuning; change the tuning of some notes when the key12 or mode13 changes.

5.2 Tuning based on the Harmonic Series

Almost all music traditions recognize the octave (Chapter 4). When note Y has a frequency (Section 1.4:
Wavelength, Frequency, and Pitch) that is twice the frequency of note Z, then note Y is one octave higher
than note Z. A simple mathematical way to say this is that the ratio14 of the frequencies is 2:1. Two notes
that are exactly one octave apart sound good together because their frequencies are related in such a simple
way. If a note had a frequency, for example, that was 2.11 times the frequency of another note (instead of
exactly 2 times), the two notes would not sound so good together. In fact, most people would �nd the e�ect
very unpleasant and would say that the notes are not "in tune" with each other.

To �nd other notes that sound "in tune" with each other, we look for other sets of pitches that have
a "simple" frequency relationship. These sets of pitches with closely related frequencies are often written
in common notation15 as a harmonic series16. The harmonic series is not just a useful idea constructed
by music theory; it is often found in "real life", in the real-world physics of musical sounds. For example,
a bugle can play only the notes of a speci�c harmonic series. And every musical note you hear is not a
single pure frequency, but is actually a blend of the pitches of a particular harmonic series. The relative
strengths of the harmonics are what gives the note its timbre17. (See Harmonic Series II: Harmonics, Intervals
and Instruments18; Standing Waves and Musical Instruments (Chapter 2); and Standing Waves and Wind
Instruments19 for more about how and why musical sounds are built from harmonic series.)

11"Harmonic Series I: Timbre and Octaves" <http://cnx.org/content/m13682/latest/>
12"Major Keys and Scales" <http://cnx.org/content/m10851/latest/>
13"Modes and Ragas: More Than just a Scale" <http://cnx.org/content/m11633/latest/>
14"Musical Intervals, Frequency, and Ratio" <http://cnx.org/content/m11808/latest/>
15"The Sta�" <http://cnx.org/content/m10880/latest/>
16"Harmonic Series I: Timbre and Octaves" <http://cnx.org/content/m13682/latest/>
17"Timbre: The Color of Music" <http://cnx.org/content/m11059/latest/>
18"Harmonic Series II: Harmonics, Intervals, and Instruments" <http://cnx.org/content/m13686/latest/>
19"Standing Waves and Wind Instruments" <http://cnx.org/content/m12589/latest/>
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Harmonic Series on C

Figure 5.1: Here are the �rst sixteen pitches in a harmonic series that starts on a C natural. The
series goes on inde�nitely, with the pitches getting closer and closer together. A harmonic series can
start on any note, so there are many harmonic series, but every harmonic series has the same set

of intervals and the same frequency ratios.

What does it mean to say that two pitches have a "simple frequency relationship"? It doesn't mean that
their frequencies are almost the same. Two notes whose frequencies are almost the same - say, the frequency
of one is 1.005 times the other - sound bad together. Again, anyone who is accustomed to precise tuning
would say they are "out of tune". Notes with a close relationship have frequencies that can be written as a
ratio20 of two small whole numbers; the smaller the numbers, the more closely related the notes are. Two
notes that are exactly the same pitch, for example, have a frequency ratio of 1:1, and octaves, as we have
already seen, are 2:1. Notice that when two pitches are related in this simple-ratio way, it means that they
can be considered part of the same harmonic series, and in fact the actual harmonic series of the two notes
may also overlap and reinforce each other. The fact that the two notes are complementing and reinforcing
each other in this way, rather than presenting the human ear with two completely di�erent harmonic series,
may be a major reason why they sound consonant21 and "in tune".

note: Nobody has yet proven a physical basis for why simple-ratio combinations sound pleasant
to us. For a readable introduction to the subject, I suggest Robert Jourdain's Music, the Brain,

and Ecstasy

Notice that the actual frequencies of the notes do not matter. What matters is how they compare to
each other - basically, how many waves of one note go by for each wave of the other note. Although the
actual frequencies of the notes will change for every harmonic series, the comparative distance between the
notes, their interval22, will be the same.

For more examples, look at the harmonic series in Figure 5.1 (Harmonic Series on C). The number beneath
a note tells you the relationship of that note's frequency to the frequency of the �rst note in the series - the
fundamental. For example, the frequency of the note numbered 3 in Figure 5.1 (Harmonic Series on C) is
three times the frequency of the fundamental, and the frequency of the note numbered �fteen is �fteen times
the frequency of the fundamental. In the example, the fundamental is a C. That note's frequency times 2
gives you another C; times 2 again (4) gives another C; times 2 again gives another C (8), and so on. Now
look at the G's in this series. The �rst one is number 3 in the series. 3 times 2 is 6, and number 6 in the
series is also a G. So is number 12 (6 times 2). Check for yourself the other notes in the series that are an
octave apart. You will �nd that the ratio for one octave (Chapter 4) is always 2:1, just as the ratio for a
unison is always 1:1. Notes with this small-number ratio of 2:1 are so closely related that we give them the
same name, and most tuning systems are based on this octave relationship.

20"Musical Intervals, Frequency, and Ratio" <http://cnx.org/content/m11808/latest/>
21"Consonance and Dissonance" <http://cnx.org/content/m11953/latest/>
22"Interval" <http://cnx.org/content/m10867/latest/>

Available for free at Connexions <http://cnx.org/content/col10338/1.1>



40 CHAPTER 5. TUNING SYSTEMS

The next closest relationship is the one based on the 3:2 ratio, the interval23 of the perfect �fth24 (for
example, the C and G in the example harmonic series). The next lowest ratio, 4:3, gives the interval of a
perfect fourth25. Again, these pitches are so closely related and sound so good together that their intervals
have been named "perfect". The perfect �fth �gures prominently in many tuning systems. In Western26

music, all major and minor chords contain, or at least strongly imply, a perfect �fth. (See Triads27 and
Naming Triads28 for more about the intervals in major and minor chords.)

5.2.1 Pythagorean Intonation

The Pythagorean system is so named because it was actually discussed by Pythagoras, the famous Greek
mathematician and philosopher, who in the sixth century B.C. already recognized the simple arithmetical
relationship involved in intervals of octaves, �fths, and fourths. He and his followers believed that numbers
were the ruling principle of the universe, and that musical harmonies were a basic expression of the mathe-
matical laws of the universe. Their model of the universe involved the "celestial spheres" creating a kind of
harmony as they moved in circles dictated by the same arithmetical relationships as musical harmonies.

In the Pythagorean system, all tuning is based on the interval of the pure �fth. Pure intervals are the
ones found in the harmonic series, with very simple frequency ratios. So a pure �fth will have a frequency
ratio of exactly 3:2. Using a series of perfect �fths (and assuming perfect octaves, too, so that you are �lling
in every octave as you go), you can eventually �ll in an entire chromatic scale29.

Pythagorean Intonation

Figure 5.2: You can continue this series of perfect �fths to get the rest of the notes of a chromatic
scale; the series would continue F sharp, C sharp, and so on.

The main weakness of the Pythagorean system is that a series of pure perfect �fths will never take you to
a note that is a pure octave above the note you started on. To see why this is a problem, imagine beginning
on a C. A series of perfect �fths would give: C, G, D, A, E, B, F sharp, C sharp, G sharp, D sharp, A sharp,
E sharp, and B sharp. In equal temperament (which doesn't use pure �fths), that B sharp would be exactly
the same pitch as the C seven octaves above where you started (so that the series can, in essence, be turned
into a closed loop, the Circle of Fifths30). Unfortunately, the B sharp that you arrive at after a series of pure
�fths is a little higher than that C.

23"Interval" <http://cnx.org/content/m10867/latest/>
24"Interval" <http://cnx.org/content/m10867/latest/#p21b>
25"Interval" <http://cnx.org/content/m10867/latest/#p21b>
26"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/>
27"Triads" <http://cnx.org/content/m10877/latest/>
28"Naming Triads" <http://cnx.org/content/m10890/latest/>
29"Half Steps and Whole Steps" <http://cnx.org/content/m10866/latest/#p0bb>
30"The Circle of Fifths" <http://cnx.org/content/m10865/latest/>
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So in order to keep pure octaves, instruments that use Pythagorean tuning have to use eleven pure �fths
and one smaller �fth. The smaller �fth has traditionally been called a wolf �fth because of its unpleasant
sound. Keys that avoid the wolf �fth sound just �ne on instruments that are tuned this way, but keys in
which the wolf �fth is often heard become a problem. To avoid some of the harshness of the wolf intervals,
some harpsichords and other keyboard instruments were built with split keys for D sharp/E �at and for G
sharp/A �at. The front half of the key would play one note, and the back half the other (di�erently tuned)
note.

Pythagorean tuning was widely used in medieval and Renaissance times. Major seconds and thirds are
larger in Pythagorean intonation than in equal temperament, and minor seconds and thirds are smaller.
Some people feel that using such intervals in medieval music is not only more authentic, but sounds better
too, since the music was composed for this tuning system.

More modern Western music, on the other hand, does not sound pleasant using Pythagorean intonation.
Although the �fths sound great, the thirds31 are simply too far away from the pure major and minor thirds
of the harmonic series. In medieval music, the third was considered a dissonance and was used sparingly -
and actually, when you're using Pythagorean tuning, it really is a dissonance - but most modern harmonies
are built from thirds (see Triads32). In fact, the common harmonic tradition that includes everything from
Baroque33 counterpoint to modern rock is often called triadic harmony.

Some modern Non-Western music traditions, which have a very di�erent approach to melody and har-
mony, still base their tuning on the perfect �fth. Wolf �fths and ugly thirds are not a problem in these
traditions, which build each mode34 within the framework of the perfect �fth, retuning for di�erent modes
as necessary. To read a little about one such tradition, please see Indian Classical Music: Tuning and
Ragas35.

5.2.2 Mean-tone System

The mean-tone system, in order to have pleasant-sounding thirds, takes rather the opposite approach from
the Pythagorean. It uses the pure major third36. In this system, the whole tone (or whole step37) is
considered to be exactly half of the pure major third. This is the mean, or average, of the two tones, that
gives the system its name. A semitone (or half step38) is exactly half (another mean) of a whole tone.

These smaller intervals all work out well in mean-tone tuning, but the result is a �fth that is noticeably
smaller than a pure �fth. And a series of pure thirds will also eventually not line up with pure octaves, so
an instrument tuned this way will also have a problem with wolf (p. 40) intervals.

As mentioned above, Pythagorean tuning made sense in medieval times, when music was dominated
by �fths. Once the concept of harmony in thirds took hold, thirds became the most important interval39;
simple perfect �fths were now heard as "austere" and, well, medieval-sounding. So mean-tone tuning was
very popular in Europe in the 16th through 18th centuries.

But �fths can't be avoided entirely. A basic major or minor chord, for example, is built of two thirds,
but it also has a perfect �fth between its outer two notes (see Triads40). So even while mean-tone tuning
was enjoying great popularity, some composers and musicians were searching for other solutions.

31"Interval": Major and Minor Intervals <http://cnx.org/content/m10867/latest/#list22a>
32"Triads" <http://cnx.org/content/m10877/latest/>
33"Music of the Baroque Period" <http://cnx.org/content/m14737/latest/>
34"Modes and Ragas: More Than just a Scale" <http://cnx.org/content/m11633/latest/>
35"Indian Classical Music: Tuning and Ragas" <http://cnx.org/content/m12459/latest/>
36"Interval": Major and Minor Intervals <http://cnx.org/content/m10867/latest/#list22a>
37"Half Steps and Whole Steps" <http://cnx.org/content/m10866/latest/>
38"Half Steps and Whole Steps" <http://cnx.org/content/m10866/latest/>
39"Interval" <http://cnx.org/content/m10867/latest/>
40"Triads" <http://cnx.org/content/m10877/latest/>
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5.2.3 Just Intonation

In just intonation, the �fth and the third are both based on the pure, harmonic series interval. Because chords
are constructed of thirds and �fths (see Triads41), this tuning makes typical Western harmonies particularly
resonant and pleasing to the ear; so this tuning is often used (sometimes unconsciously) by musicians who
can make small tuning adjustments quickly. This includes vocalists, most wind instruments, and many string
instruments.

As explained above (p. 40), using pure �fths and thirds will require some sort of adjustment somewhere.
Just intonation makes two accommodations to allow its pure intervals. One is to allow inequality in the
other intervals. Look again at the harmonic series (Figure 5.1: Harmonic Series on C).

Figure 5.3: Both the 9:8 ratio and the 10:9 ratio in the harmonic series are written as whole notes. 9:8
is considered a major whole tone and 10:9 a minor whole tone. The di�erence between them is less
than a quarter of a semitone.

As the series goes on, the ratios get smaller and the notes closer together. Common notation42 writes
all of these "close together" intervals as whole steps (whole tones) or half steps (semitones), but they are of
course all slightly di�erent from each other. For example, the notes with frequency ratios of 9:8 and 10:9
and 11:10 are all written as whole steps. To compare how close (or far) they actually are, turn the ratios
into decimals.

Whole Step Ratios Written as Decimals

• 9/8 = 1.125
• 10/9 = 1.111
• 11/10 = 1.1

These are fairly small di�erences, but they can still be heard easily by the human ear. Just intonation uses
both the 9:8 whole tone, which is called a major whole tone and the 10:9 whole tone, which is called a
minor whole tone, in order to construct both pure thirds and pure �fths.

note: In case you are curious, the size of the whole tone of the "mean tone" system is also the
mean, or average, of the major and minor whole tones.

The other accommodation with reality that just intonation must make is the fact that a single just-
intonation tuning cannot be used to play in multiple keys. In constructing a just-intonation tuning, it
matters which steps of the scale are major whole tones and which are minor whole tones, so an instrument
tuned exactly to play with just intonation in the key of C major will have to retune to play in C sharp major
or D major. For instruments that can tune almost instantly, like voices, violins, and trombones, this is not a
problem; but it is unworkable for pianos, harps, and other other instruments that cannot make small tuning
adjustments quickly.

41"Triads" <http://cnx.org/content/m10877/latest/>
42"The Sta�" <http://cnx.org/content/m10880/latest/>
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As of this writing, there was useful information about various tuning systems at several di�erent websites,
including The Development of Musical Tuning Systems43 , where one could hear what some intervals sound
like in the di�erent tuning systems, and Kyle Gann's Just Intonation Explained44 , which included some
audio samples of works played using just intonation.

5.3 Temperament

There are times when tuning is not much of an issue. When a good choir sings in harmony without instru-
ments, they will tune without even thinking about it. All chords will tend towards pure �fths and thirds,
as well as seconds, fourths, sixths, and sevenths that re�ect the harmonic series. Instruments that can bend
most pitches enough to �ne-tune them during a performance - and this includes most orchestral instruments
- also tend to play the "pure" intervals. This can happen unconsciously, or it can be deliberate, as when a
conductor asks for an interval to be "expanded" or "contracted".

But for many instruments, such as piano, organ, harp, bells, harpsichord, xylophone - any instrument
that cannot be �ne-tuned quickly - tuning is a big issue. A harpsichord that has been tuned using the
Pythagorean system or just intonation may sound perfectly in tune in one key - C major, for example -
and fairly well in tune in a related key45 - G major - but badly out of tune in a "distant" key like D �at
major. Adding split keys or extra keys can help (this was a common solution for a time), but also makes
the instrument more di�cult to play. In Western music46, the tuning systems that have been invented and
widely used that directly address this problem are the various temperaments, in which the tuning of notes
is "tempered" slightly from pure intervals. (Non-Western music traditions have their own tuning systems,
which is too big a subject to address here. See Listening to Balinese Gamelan47 and Indian Classical Music:
Tuning and Ragas48 for a taste of what's out there.)

5.3.1 Well Temperaments

As mentioned above (p. 40), the various tuning systems based on pure intervals eventually have to include
"wolf" intervals that make some keys unpleasant or even unusable. The various well temperament tunings
that were very popular in the 18th and 19th centuries tried to strike a balance between staying close to pure
intervals and avoiding wolf intervals. A well temperament might have several pure �fths, for example, and
several �fths that are smaller than a pure �fth, but not so small that they are "wolf" �fths. In such systems,
tuning would be noticeably di�erent in each key49, but every key would still be pleasant-sounding and
usable. This made well temperaments particularly welcome for players of di�cult-to-tune instruments like
the harpsichord and piano.

note: Historically, there has been some confusion as to whether or not well temperament and
equal temperament are the same thing, possibly because well temperaments were sometimes referred
to at the time as "equal temperament". But these well temperaments made all keys equally useful,
not equal-sounding as modern equal temperament does.

As mentioned above (Section 5.2.2: Mean-tone System), mean-tone tuning was still very popular in the
eighteenth century. J. S. Bach wrote his famous "Well-Tempered Klavier" in part as a plea and advertise-
ment to switch to a well temperament system. Various well temperaments did become very popular in the
eighteenth and nineteenth centuries, and much of the keyboard-instrument music of those centuries may have
been written to take advantage of the tuning characteristics of particular keys in particular well tempera-
ments. Some modern musicians advocate performing such pieces using well temperaments, in order to better

43http://www.midicode.com/tunings/index.shtml
44http://www.kylegann.com/tuning.html
45"The Circle of Fifths" <http://cnx.org/content/m10865/latest/>
46"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/>
47"Listening to Balinese Gamelan: A Beginners' Guide" <http://cnx.org/content/m15795/latest/>
48"Indian Classical Music: Tuning and Ragas" <http://cnx.org/content/m12459/latest/>
49"Major Keys and Scales" <http://cnx.org/content/m10851/latest/>
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understand and appreciate them. It is interesting to note that the di�erent keys in a well temperament
tuning were sometimes considered to be aligned with speci�c colors and emotions. In this way they may
have had more in common with various modes and ragas50 than do keys in equal temperament.

5.3.2 Equal Temperament

In modern times, well temperaments have been replaced by equal temperament, so much so in Western
music51 that equal temperament is considered standard tuning even for voice and for instruments that are
more likely to play using just intonation when they can (see above (Section 5.2.3: Just Intonation)). In
equal temperament, only octaves (Chapter 4) are pure (Section 5.2.1: Pythagorean Intonation) intervals.
The octave is divided into twelve equally spaced half steps52, and all other intervals53 are measured in half
steps. This gives, for example, a �fth54 that is a bit smaller than a pure �fth, and a major third55 that is
larger than the pure major third. The di�erences are smaller than the wolf tones (p. 40) found in other
tuning systems, but they are still there.

Equal temperament is well suited to music that changes key56 often, is very chromatic57, or is harmonically
complex58. It is also the obvious choice for atonal59 music that steers away from identi�cation with any
key or tonality at all. Equal temperament has a clear scienti�c/mathematical basis, is very straightforward,
does not require retuning for key changes, and is unquestioningly accepted by most people. However,
because of the lack of pure intervals, some musicians do not �nd it satisfying. As mentioned above, just
intonation is sometimes substituted for equal temperament when practical, and some musicians would also
like to reintroduce well temperaments, at least for performances of music which was composed with well
temperament in mind.

5.4 A Comparison of Equal Temperament with the Harmonic Series

In a way, equal temperament is also a compromise between the Pythagorean approach and the mean-tone
approach. Neither the third nor the �fth is pure, but neither of them is terribly far o�, either. Because
equal temperament divides the octave into twelve equal semi-tones (half steps), the frequency ratio of each
semi-tone is the twelfth root of 2. If you do not understand why it is the twelfth root of 2 rather than, say,
one twelfth, please see the explanation below (p. 46). (There is a review of powers and roots in Powers,
Roots, and Equal Temperament if you need it.)

50"Modes and Ragas: More Than just a Scale" <http://cnx.org/content/m11633/latest/>
51"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/>
52"Half Steps and Whole Steps" <http://cnx.org/content/m10866/latest/>
53"Interval" <http://cnx.org/content/m10867/latest/>
54"Interval" <http://cnx.org/content/m10867/latest/#p21b>
55"Interval": Major and Minor Intervals <http://cnx.org/content/m10867/latest/#list22a>
56"Major Keys and Scales" <http://cnx.org/content/m10851/latest/>
57"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/#p7f>
58"Beginning Harmonic Analysis" <http://cnx.org/content/m11643/latest/>
59"What Kind of Music is That?" <http://cnx.org/content/m11421/latest/#p7e>
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Figure 5.4: In equal temperament, the ratio of frequencies in a semitone (half step) is the twelfth root
of two. Every interval is then simply a certain number of semitones. Only the octave (the twelfth power
of the twelfth root) is a pure interval.

In equal temperament, the only pure interval is the octave. (The twelfth power of the twelfth root of two
is simply two.) All other intervals are given by irrational numbers based on the twelfth root of two, not nice
numbers that can be written as a ratio of two small whole numbers. In spite of this, equal temperament
works fairly well, because most of the intervals it gives actually fall quite close to the pure intervals. To
see that this is so, look at Figure 5.5 (Comparing the Frequency Ratios for Equal Temperament and Pure
Harmonic Series). Equal temperament and pure intervals are calculated as decimals and compared to each
other. (You can �nd these decimals for yourself using a calculator.)
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Comparing the Frequency Ratios for Equal Temperament and Pure Harmonic Series

Figure 5.5: Look again at Figure 5.1 (Harmonic Series on C) to see where pure interval ratios come
from. The ratios for equal temperament are all multiples of the twelfth root of two. Both sets of ratios
are converted to decimals (to the nearest ten thousandth), so you can easily compare them.

Except for the unison and the octave, none of the ratios for equal temperament are exactly the same as
for the pure interval. Many of them are reasonably close, though. In particular, perfect fourths and �fths
and major thirds are not too far from the pure intervals. The intervals that are the furthest from the pure
intervals are the major seventh, minor seventh, and minor second (intervals that are considered dissonant60

anyway).
Because equal temperament is now so widely accepted as standard tuning, musicians do not usually even

speak of intervals in terms of ratios. Instead, tuning itself is now de�ned in terms of equal-temperament,
with tunings and intervals measured in cents. A cent is 1/100 (the hundredth root) of an equal-temperament
semitone. In this system, for example, the major whole tone discussed above measures 204 cents, the minor
whole tone 182 cents, and a pure �fth is 702 cents.

Why is a cent the hundredth root of a semitone, and why is a semitone the twelfth root of an octave? If
it bothers you that the ratios in equal temperament are roots, remember the pure octaves and �fths of the
harmonic series.

60"Consonance and Dissonance" <http://cnx.org/content/m11953/latest/>
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Frequency Relationships

Figure 5.6: Remember that, no matter what note you start on, the note one octave higher has 2
times its frequency. Also, no matter what note you start on, the note that is a perfect �fth higher has
exactly one and a half times its frequency. Since each of these intervals is so many "times" in terms
of frequencies, when you add intervals, you multiply their frequencies. For example, a series of two
perfect �fths will give a frequency that is 3/2 x 3/2 (or 9/4) the beginning frequency.

Every octave has the same frequency ratio; the higher note will have 2 times the frequency of the lower
note. So if you go up another octave from there (another 2 times), that note must have 2 x 2, or 4 times
the frequency of the lowest note. The next octave takes you up 2 times higher than that, or 8 times the
frequency of the �rst note, and so on.

In just the same way, in every perfect �fth, the higher note will have a frequency one and a half (3/2)
times the lower note. So to �nd out how much higher the frequency is after a series of perfect �fths, you
would have to multiply (not add) by one and a half (3/2) every time you went up another perfect �fth.

All intervals work in this same way. So, in order for twelve semitones (half steps) to equal one octave, the
size of a half step has to be a number that gives the answer "2" (the size of an octave) when you multiply
it twelve times: in other words, the twelfth root of two. And in order for a hundred cents to equal one
semitone, the size of a cent must be the number that, when you multiply it 100 times, ends up being the
same size as a semitone; in other words, the hundredth root of the twelfth root of two. This is one reason
why most musicians prefer to talk in terms of cents and intervals instead of frequencies.

5.5 Beats and Wide Tuning

One well-known result of tempered tunings is the aural phenomenon known as beats. As mentioned above
(p. 38), in a pure interval (Section 5.2.1: Pythagorean Intonation) the sound waves have frequencies that are
related to each other by very simple ratios. Physically speaking, this means that the two smooth waves line
up together so well that the combined wave - the wave you hear when the two are played at the same time
- is also a smooth and very steady wave. Tunings that are slightly o� from the pure interval, however, will
result in a combined wave that has an extra bumpiness in it. Because the two waves are each very even, the
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bump itself is very even and regular, and can be heard as a "beat" - a very regular change in the intensity
of the sound. The beats are so regular, in fact, that they can be timed; for equal temperament they are on
the order of a beat per second in the mid range of a piano. A piano tuner works by listening to and timing
these beats, rather than by being able to "hear" equal temperament intervals precisely.

It should also be noted that some music traditions around the world do not use the type of precision
tunings described above, not because they can't, but because of an aesthetic preference for wide tuning. In
these traditions, the sound of many people playing precisely the same pitch is considered a thin, uninteresting
sound; the sound of many people playing near the same pitch is heard as full, lively, and more interesting.

Some music traditions even use an extremely precise version of wide tuning. The gamelan61 orchestras
of southeast Asia, for example, have an aesthetic preference for the "lively and full" sounds that come from
instruments playing near, not on, the same pitch. In some types of gamelans, pairs of instruments are
tuned very precisely so that each pair produces beats, and the rate of the beats is the same throughout the
entire range62 of that gamelan. Long-standing traditions allow gamelan craftsmen to reliably produce such
impressive feats of tuning.

5.6 Further Study

As of this writing:

• Kyle Gann's An Introduction to Historical Tunings63 is a good source about both the historical back-
ground and more technical information about various tunings. It also includes some audio examples.

• The Huygens-Fokker Foundation has a very large on-line bibliography64 of tuning and temperament.
• Alfredo Capurso, a researcher in Italy, has developed the Circular Harmonic System (c.ha.s), a tempered

tuning system that solves the wolf �fth problem by adjusting the size of the octave as well as the �fth.
It also provides an algorithm for generating microtonal scales. You can read about it at the Circular
Harmonic System website65 or download a paper66 on the subject. You can also listen to piano
performances using this tuning by searching for "CHAS tuning" at YouTube.

• A number of YouTube videos provide comparisons that you can listen to, for example comparisons of
just intonation and equal temperament, or comparisons of various temperaments.

61"Balinese Gamelan" <http://cnx.org/content/m15796/latest/>
62"Range" <http://cnx.org/content/m12381/latest/>
63http://www.kylegann.com/histune.html
64http://www.huygens-fokker.org/docs/bibliography.html
65http://www.chas.it/
66http://math.unipa.it/∼grim/Quaderno19_Capurso_09_engl.pdf
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triadic harmony, 41
tuning, � 5(37)

W wavelength, 5, � 2(7)

waves, � 2(7)
well temperament, � 5(37), 43
wide tuning, 48
wolf, 41
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