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Chapter 1

On the Eschatology of the Human

Condition1

1.1 On the Eschatology of the Human Condition

We are now facing a crisis concerning the availability of an assured supply of energy and other resources to
feed the ravenous productive capacity of our society. Complicating this critical situation is the problem of
controlling the unwanted byproducts of production and consumption. Our present situation stands in striking
contrast to the ubiquitous pattern of growth and expansion evidenced by nearly every aspect of what has
come to be known as civilization during the past century. We can no longer avoid, nor dare we postpone,
the obligation to investigate these issues in a serious and expeditious manner in order to ascertain whether
the present reverses are but temporary diversions and �uctuations from a long range pattern of stable and
sustainable growth, or whether they are harbingers of limits to expansion imposed by nature, limits which
cannot be passed with impunity. Our investigation must, insofar as it is able, be scienti�c; stripping away
the super�cialities of mere experience in order to uncover the underlying motive forces which frame and
mold the opportunities and constraints whose realizations we recognize in the continuing progression of daily
events. As in so many �elds whose mysteries have been revealed through diligent application of the methods
of science, here too we may expect to �nd that super�cial experience misleads and diverts the attention from
the matter of essential signi�cance.

1.1.1 Exponential Growth

In the issue at hand the lesson taught by the immediate experience of life in America and the other industrial
nations is that continuing exponential growth, growth which cumulates according to the law of compound
interest, growth without limit or constraint, is the natural human condition. The more re�ective amongst
us may examine the historical record to penetrate beyond the present and the immediate past, but they
too �nd evidence to support the conclusion of immediate experience unless they search so far into the past
that the very nature of society seems so di�erent from our own as to invalidate any method or even hope of
comparison. Yet the Malthusian critique, in forms more or less sophisticated, remains to haunt us in even
the best of times with the suspicion that those early civilizations, so unlike our own, hold the key not only
to the �owering of our recent past but also to a withered future.

1.1.2 Growth of human knowledge

There can be little doubt that immediate experience provides a �rm foundation for the expectation of
continued exponential growth. For example, we derive from human knowledge all our skills and abilities to

1This content is available online at <http://cnx.org/content/m17670/1.4/>.
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2 CHAPTER 1. ON THE ESCHATOLOGY OF THE HUMAN CONDITION

turn the base matter of the world to our own interests. Knowledge grows with time; if we attempt to measure
it�not by its essential quality, but by its quantity as manifested in reduction to printed form stored as books
and journals in archival libraries�we �nd that knowledge, too, grows exponentially, apparently inexorably
increasing by a �xed fraction year after year. Figure 1 exhibits the growth of the number of scienti�c
journals with time �one typical measure of the growth of knowledge. The vertical axis scale is so arranged
that exponential growth is represented by straight lines. The �gure suggests that scienti�c knowledge has
grown exponentially for more than 200 years, doubling its quantity every 15 years. If this pattern of growth
persists for another two and one half decades, an addition of some 12% to the historic record represented
by the �gure, there will be in the year 2000 more than 1 million scienti�c journals publishing more than
25 million scienti�c articles each year. It has been calculated that each scienti�c article published today
represents an investment of about $25,000; this cost will certainly not decrease in the future. Extrapolation
of the historic trend of Figure 1.1 therefore entails the conclusion that annual investment in scienti�c e�ort in
the year 2000 will reach nearly one trillion dollars, which is approximately the 1973 gross national product of
the United States. If the trend continues until 2050, the investment in science will rise to 10 trillion dollars
annually. We do not suggest that these estimates are predictions; rather, they have been introduced to
provide the reader with a yardstick with which to measure the encouraging projections of the technological
optimists who argue that the increased application of novel technology will relax current constraints which
manifest themselves in the form of continual shortages rotating from food to productive capacity to energy
and back again to food. Newton has already combed the beach, found the smoother pebbles and prettier
shells; we must explore his great ocean of truth and the price of the vessel in which we can do this must
be paid. If continuance of exponential growth is to depend on technology, and ultimately on science, then
the growth of technology and science must themselves continue on their exponential path, and then the
projections provided above will, no matter that they boggle common sense, foreshadow reality.
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3

Figure 1.1

1.1.3 Growth of the energy system

The recent historic exponential growth of civilization is more apparent to us all in other ways. To consider
a timely example: although the sources of energy used in the United States have changed dramatically
since 1800, the growth of annual inputs to the energy system of this country has deviated but little from
its exponential trend in the intervening 170 years. There was a slight relative excess from 1900 until the
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4 CHAPTER 1. ON THE ESCHATOLOGY OF THE HUMAN CONDITION

Great Depression in 1929 and a subsequent defect until the end of World War II, but the deviations from the
exponential trend displayed in Figure 1.2 are small when compared with the enormous social dislocations
with which they were associated, and they seem not to have any long term e�ect on the underlying growth
pattern.

Figure 1.2

According to Figure 1.2, inputs to the energy system of the United States have been doubling every 26
years; they "should", if growth were to continue unchecked, double again between the present time (1974) and
the year 2000. Thus, could we now provide su�cient energy merely to maintain present consumption levels,
by the year 2000 we would �nd that we would be providing for but one-half our then "normal" requirements,
based upon the hypothesis that the historic exponential growth trend in energy utilization re�ects a natural
and appropriate feature of civilization. Upon this hypothesis it follows that most Americans now alive will
live to see the day when society will be able to assuage but half their "natural" craving for energy. On this
scale, major oil discoveries such as the Alaskan North Slope �eld and the North Sea deposits diminish in
stature: total North Slope recovery is anticipated to be equivalent to 3 years consumption for the United
States at present usage rates. Our ability to provide energy in amounts that will continue to double every
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5

26 years clearly demands major technological innovations and extensive capital investment. Assimilation of
the byproducts of these e�orts, social as well as substantial, may require still greater e�orts and ingenuity.

1.1.4 Population Growth

It is sometimes thought that population growth is the essential driving force behind the general exponential
growth of other components of society. That this is not so is readily seen by comparison of the rates of
growth of United States population and of the inputs to the energy system of the United States. Recent
population growth rates correspond to a doubling period of about 45 years compared with the 26 year
doubling period for energy input growth; this simply means that per capita energy inputs have been growing.
Nevertheless, population growth is an important component in the general scheme of expansion exhibited by
our civilization, and one which a�ects the life style of individuals in a relatively direct way, for within an adult
lifetime of 50 years an American can expect to see the population double (if trends continue). The e�ect would
be a consequent major density increase in urban living areas, increased strains on commodity delivery and
other communication systems, increased inequalities in the distribution of wealth, larger average community
size, and an increasingly impersonal and depersonalized social life outside the spheres of friendship and work
role. Contrast this situation with the life of the typical western European in the Middle Ages, say 700-1100:
population growth was negligible during this period; personal mobility was low; and personal associations
and interactions remained relatively stable throughout most people's lifespan.

Figure 1.3 shows that the population of the United States has changed in di�erent ways at di�erent
times: in the earliest periods after European settlement, growth was exponential and extremely rapid; from
1650 to about 1880, population growth was again exponential with virtually no deviations during this 230
year interval. Since 1880 there has been a marked decline in the rate of growth with irregularities which
obscure the general trend features. We may nevertheless conclude that any American born between 1650
and 1850 could con�dently conclude from personal experience and the historical record that exponential
population growth is a natural feature of life in America. The marked change evident in the manner of
growth of population during the period centered about 1880 calls for an explanation) and one is readily
forthcoming. Prior to that period, there remained a western frontier which was, bit by bit, continually
pushed back thereby e�ectively increasing the land area of the settled nation, until the constraint of �xed
geographical and settled limits induced a change in the nature of population increase. Indeed, during the
earlier periods, population increase in the United States did not necessarily lead to increased population
density due to the e�ect of territorial expansion, so that, although more recent periods have seen smaller
rates of growth, the local population density experienced by most Americans is probably increasing more
rapidly now than before.

Available for free at Connexions <http://cnx.org/content/col10587/1.7>
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Figure 1.3
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1.1.5 Alternative Possibilities

The analysis to this point appears to con�rm the generality of exponential growth for various important
segments of civilization over periods of time signi�cantly longer than a single generation. The feature of
change in the rate of growth of United States population also suggests that there are some mechanisms which
can distort or perhaps even destroy the operation of exponential increase. Let us turn our attention to the
determination of what these might be and whether they and their e�ects are intrinsic and unavoidable, or
extrinsic and removable.

We would like, of course, to be able to experiment with numerous identical copies of our world with
all its inhabitants and curiosities, subjecting each replica to a distinct set of circumstances and following
each along its future path to its terminus, thus we could establish the more and the less desirable modes of
development which are open to us, asses their bene�ts and costs, and learn how to direct ourselves and our
posterity, if not to the best of all possible worlds, at least away from the worst. That this option is not open
to us should not act as a deterrent to serious consideration of the multiple possibilities the future holds, for
there are still two ways left to proceed. The more re�ned founds itself on a deep idea of Maxwell, who in
his study of the statistical properties of gases, conceived an in�nite ensemble of ideal replicas of the system
of actual interest which populated, in his thoughts if not in reality, the various ideally possible physical
states. Maxwell then sought to identify the most probable of these states with the state which, apart from
certain relatively negligible �uctuations, actually obtained. His e�orts created the important and successful
discipline of statistical mechanics and set a potential pattern for the study of social systems which has not
yet received the attention it deserves.

The second method is much more concrete and analogical, and consequently more narrow in its assertions
and less certain in its implications. It consists of �nding analogues, or models, of aspects of human civilization,
primarily amongst the micro-organisms and insects which run through their life cycles at rates so great that
the birth, development, and death of their �societies� and the eschatology of their condition can be followed
and documented during an interval brief according to the standards of change of our civilizations. But a
fundamental problem always intrudes: to what extent is it permissible to generalize from the rise and fall of
the fruit �y Drosophila to the rise and fall of Rome, or of humanity itself? We cannot answer this question,
but we also cannot avoid the belief that one of the most pressing problems which confronts anyone concerned
with the future of humanity is the determination of whether, and if so, how, human society di�ers from the
societies of lower forms insofar as the great forces which govern growth and decay are concerned.

1.1.6 Logistic Growth

Consider, for instance, the life cycle of a population of wild type Drosophila grown in a pint bottle, as
illustrated in Figure 1.4. It is clear from that �gure that the population does not increase inde�nitely and
exponentially, but rather approaches, after some brief time, an absolute limiting value beyond which it cannot
pass. It is probable that no Drosphila savant would assert that either the historical record or common sense
suggest that exponential growth is the norm for Drosphila society, as it generally seems and has seemed to
be for us. Yet there is a certain lawfulness in the pattern of population growth displayed in Figure 1.4, called
logistic growth, whose exact form need not concern us here. Su�ce it to say that by means of a formula, not
more complex than that which describes exponential growth itself, the calculations shown in the rightmost
column of the Table below were obtained, which show a striking agreement with the observed population.
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Figure 1.4
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Figure 1.5
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10 CHAPTER 1. ON THE ESCHATOLOGY OF THE HUMAN CONDITION

Growth of Wild Type Drosophilia Population in a Pint Bottle

Date of census Observed population Calculated population from equation

December 2 22 14.3

December 11 39 61.0

December 14 105 96.7

December 17 152 150.2

December 20 225 226.0

December 23 390 326.0

December 27 499 488.4

December 29 547 574.1

December 31 618 656.8

January 4 791 798.4

January 7 877 877.1

January 10 938 932.9

Table 1.1

The logistic growth pattern is as common amongst short lived rapidly reproducing lower life forms as
the exponential pattern is amongst humans, and amongst people-related phenomena such as knowledge and
energy inputs. Figure 5 displays the life cycle of a society of yeast cells; once again, the presence of an
absolute limit beyond which population apparently cannot press is evident, and once again, the logistic
mathematical description is appropriate.

In order to draw the connection between these societal microcosms which pass, from our vantage point,
so quickly, through all their phases, let us reconsider the data for the yeast cell population of Figure 1.5
expressed with respect to the semi-logarithmic vertical scale such as used in Figure 1.1, and in terms of
which exponential growth corresponds to straight lines. Figure 1.6, so drawn, shows that for the �rst 6
hours of growth, the yeast population does in fact increase exponentially, but thereafter a rapid decline
in the rate of increase becomes apparent, leading after another 6 hours to a stagnant population whose
numbers barely change until termination of the experiment. The reader can hardly help but notice the
approximate correspondence between the early and middle periods of Figure 1.6 with the corresponding
periods of exponential growth of United States population from 1650 to 1880, and the subsequent decline in
the rate of increase after 1880 displayed in Figure 1.3. Are we certain that we are di�erent from Drosophila,
or from yeast cells, insofar as the cycle of population is concerned? If we are certain, on what do we base
our certainty?
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Figure 1.6
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12 CHAPTER 1. ON THE ESCHATOLOGY OF THE HUMAN CONDITION

Figure 1.4, Figure 1.5, and Figure 1.6 do not convey the full picture of the life cycle of a microscosmic
society as it is now known, for they do not follow developments far enough into the future.

If the life cycle of the microcosmic Drosophia and yeast populations are similar to the human cycle of
population and societal growth, then the former con�rms our explanation of the cause of the deviation from
exponentiality of the population growth of the United States) shows that it is essentially inevitable, and
promises analogous declines in growth rate and asymptotic approach to stable maximum states for world
population and possibly for energy consumption, productivity, growth of knowledge, etc., as well.

1.1.7 Equillibrium State

It is not di�cult to envision this equilibrium state and its corresponding equilibrium society as a paradise)
�nally freed from the pressures and problems created by incessant population growth and its derivative
phenomena, and granted the option to accommodate its desires to its means in a gradual evolutionary manner.
But such a society would, necessarily, di�er greatly from that to which we have become accustomed, in which
savings bank deposits and corporate income o�er �xed annual fractional returns by some �ducial duplication
of the theological miracle of the creation of substance and value from null and void. The equilibrium society
apparently promised by the Drosophila and yeast civilizations will necessarily be one of decreased personal
and social mobility, decreased personal opportunity, and no doubt of decreased excitement. Each of us will
have di�erent views of the desirability of such stable circumstances.

Figure 1.4, Figure 1.5, and Figure 1.6 paint, in fact, too cheerful a picture of the population life cycle of
microcosmic societies, and by implication, of our own potential future, for they do not follow developments far
enough into the future. They misleadingly present the impression that an ultimate stable state of maximum
population is attained by gradual increase from earlier states; they carry the implication that once society
has adapted to the relatively rapid and critical conversion from exponential growth, displayed, for instance,
from hours 7 through 12 in Figure 1.6, a uniform and hence rather crisis-free period of unlimited duration
will follow � a period perhaps bland, possibly undesirable in certain aspects, but one at least stable.
Unfortunately this is not the case, for the same forces which worked to constrain and limit exponential
growth, converting it into a type of growth which is subject to an absolute upper bound as displayed in
Figure 1.4, Figure 1.5, and Figure 1.6, continue to work even as population closes upon the maximum value.

1.1.8 Pollution

In the microscosmic societies these forces of constraint are imposed, on the one hand, by the geometrical
restraints of the �niteness of the environment, pint bottle or Petrie dish; and on the other by the related twin
factors of resource depletion and non-absorption of the byproducts of metabolism, which we generally will
interpret for our more complex situation as �pollution�. Whereas the direct e�ect of the �nite environment
is the absolute limitation of population, the ultimate e�ect of resource depletion and increasing pollutant
density is a gradual diminution of the maximum value of the population that the limited environment will
support. When combined, these factors suggest that the life cycle �gure should in its earliest stages display
unconstrained exponential growth of population when the population density is small and the ability of
the environment to supply necessary resources and di�use undesirable societal byproducts is correspond-
ingly great, Thereafter, a period should follow wherein the geometrical constraints of the �niteness of the
environment enforce an absolute limit on the supportable population. These two stages are exhibited in
Figure 1.4, Figure 1.5, and Figure 1.6, and the cycle of United States population growth displays the �rst
and the early e�ects of the second (Figure 1.3). A subsequent third stage follows, wherein the maximum
supportable population declines gradually and steadily, ultimately to zero, so that the entire life cycle might
appear somewhat as shown in Figure 1.7 below.
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Figure 1.7

1.1.9 Time-lags

There is yet another factor which must be recognized in our description of the future population. We
know that the modi�cation of social attitudes or the realization of any great enterprise requires a certain
lead time; between the decision and the e�ect there often intervene many years. Such time lags also occur
in natural phenomena and have the utmost signi�cance for the questions that concern us here. We may
decide today to ban the use of pesticides, but the maximum value of pesticide contamination of, let us
say, �sh, will nevertheless not be realized for many years; we may decide, or be constrained, to stabilize
population now, but population will nevertheless continue to increase for some time into the future due:
to actions and decisions taken earlier but whose consequence have not yet unfolded. Even so apparently
simple a matter as the national reduction of speed limits requires a not inconsiderable time interval between
the impulse of necessity and reaction of implementation. So too it is amongst microcosmic societies. The
natural "velocity" of population growth may carry population to magnitudes greater than those sustainable
in equilibrium conditions (just as a ball thrown upward against the restraining force of gravity continues
to rise for some time despite the downward tug), thereby setting the stage for subsequent decline which
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14 CHAPTER 1. ON THE ESCHATOLOGY OF THE HUMAN CONDITION

itself may carry population below sustainable levels. Thus we come to anticipate the possibility and indeed
the probability of cyclical oscillations in the population life cycle curve, oscillations superimposed upon the
general long term decline which itself follows the initial surge of exponential growth and logistic constraint.
The early portions of such a curve are shown in Figure 1.8, which illustrates the life cycle of a population
of Paramecia grown in a limited environment. During the �rst three days, the initially small Paramecia
population increases exponentially; at the end of that time, the constraints of their limited environment
become signi�cant and the rate of increase of population declines to zero, while the population itself attains
its maximum value at the end of 6 days. Thereafter, -it declines, at �rst rapidly, and then, as its density
decreases, more slowly, until a local minimum value is attained at about 16 days, after which another period
of increase is observed, which slows to another but this time lesser maximum, and is followed by a decline
initiating a new cycle.

Figure 1.8

The period from 6 to 8 days constitutes an era of catastrophe for the Paramecia: population collapses
to about 60 percent of its maximum value within a relatively brief interval. We can imagine governments
crumbling, learning and art extinguished, a mean, brief and ugly life the reward for those who survive. By
contrast, the long stable interval from 8 to 17 days which follows must appear most agreeable by contrast.
One can hardly avoid drawing the parallel with the Fall of Rome and the subsequent stable medieval period.
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1.1.10 Conclusion

Let us summarize the conclusions we wish to draw from the preceding remarks. First, the pattern of
unconstrained exponential growth of human civilization so often found in the past is similar to the pattern
of exponential growth exhibited by populations of micro-organisms and insects in their earliest phases when
population densities are low. Second, the constraints imposed on the growth of the microcosmic societies
by the limitations of their environment entail an absolute upper bound on their population, and similar
constraints appear to apply to the various components, including population, of human societies. Both of
these phases can be accurately described by simple mathematical formulae, independent of whether human
or microscosmic societies are considered. Third, the microcosmic societies display an additional phase of
population oscillation and ultimate decline.

We must now inquire whether this third phase may also be descriptive of the future life cycle of human
population, and also whether it too can be described by mathematical formulae which lay bare its causation.
If the answer to this last question is a�rmative, then we will have a powerful tool with which to study the
former problem.

The e�orts of numerous scienti�c investigators have shown how this problem, at least in its gross char-
acteristics, can be approached. One of the earliest and most distinguished of them, a truly original mind,
was Vito Volterra, Professor of Mathematical Physics and Celestial Mechanics at the University of Rome,
deliverer of an inaugural lecture at the founding of the Rice Institute in 1915. His theory of the "strug-
gle for existence" prepared the foundation for all future e�orts to construct a mathematical description of
the interactions which determine the increase and decline of species and societies which compete with each
other and amongst themselves for the limited sources of sustenance in their environment. His work, a far
reaching extension of the Malthusian ideas, can be recognized in the most recent and vital computerized
dynamic simulations of the world system associated with Jay Forrester, Dennis and Donella Meadows, and
other contemporary scholars. The mathematical constituents of models of the Volterra and Forrester type
are the formulae which describe unconstrained exponential and limited logistic growth. They are combined
to re�ect the structures of the various fundamental component sectors of civilization (including Population,
Natural Resources, Capital Investment, and Pollution) and their intricate interactions. The resulting "life
cycles" display the typical three stages exhibited by the life cycle of Paramecia (Figure 1.8 above), including
the third oscillatory stage. Figure 1.9 shows the situation for the well known World Dynamics models of
Forrester[12] and Meadows et. al.[11], based on the assumption that the interactive processes which are cur-
rently operative in our civilization will continue to follow their basic patterns subject only to the constraints
which are naturally imposed by their mutual interaction. Population, Capital Investment, and Capital In-
vestment in Agriculture Fraction (the amount of capital invested in agriculture) all exhibit: (the pattern of
early exponential growth, logistic approach to a maximum, and the initiation of the subsequent oscillatory
period.
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16 CHAPTER 1. ON THE ESCHATOLOGY OF THE HUMAN CONDITION

Figure 1.9: Basic Behavior of the World Model Showing the Mode in which Industrialization and
Population are Surpressed by Falling Natural Resources.

Available for free at Connexions <http://cnx.org/content/col10587/1.7>



17

Figure 1.10Available for free at Connexions <http://cnx.org/content/col10587/1.7>



18 CHAPTER 1. ON THE ESCHATOLOGY OF THE HUMAN CONDITION

The potentially catastrophic e�ect of the third, oscillatory, stage of development is strikingly illustrated
in Figure 1.10 which displays the possible consequences of the more e�cient utilization of natural resources
without corresponding adjustments in the other basic sectors of civilization. Without diverting our attention
to argue the merits or reliability of this particular projection, let us note the beginning of the second
oscillation in each of the curves describing the life cycle of Population, Pollution, Capital Investment, and
Capital Investment Fraction in Agriculture (labeled CIAF in the Figure). Were the �gure drawn to another
scale, the similarity to the life cycle of Paramecia in Figure 1.8 would be greatly enhanced.

We believe that the similarities between human and microcosmic societies which have been suggested
above are more than super�cial analogies. They justify, in our opinion, the most diligent and comprehensive
investigation of the extent to which we can scienti�cally describe the condition of civilization and its variation
with time. We must study the range of alternatives, one of which may be our future; and discover the options
that are open to us for directing our destiny, insofar as it is possible, to the ful�llment of the aspirations and
ultimate attainments of civilization.
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Chapter 2

Models1

2.1 Models

The concept of a model is very close to that of an analogy. It is so fundamental to our thought, decision
making, and problem solving processes that it is di�cult to isolate and study; however, to accomplish the
goal of simulating and understanding complicated social systems, it is essential that we do understand the
concept of a model and develop methods for constructing them. Like many basic concepts, it is best described
by examples:

2.1.1 Physical Model

To the average person the word "model" might bring to mind someone modeling a dress, or perhaps a
photographer's model, or even a model airplane or car. Let's consider these cases. The usual reason for
looking at a dress on a model is to imagine what the dress would look like on one's self without having to buy
it to �nd out. The photographer uses his camera to make a likeness of the model in the form of a picture.
The model plane or car allows one to enjoy the details and perspectives of the model without the problems
and expense of actual ownership of the airplane or car. Indeed, one can try experiments on the models that
would be very di�cult or expensive to actually perform on the real thing.

Consider the methods and purposes behind the architect's model of a building, the car designer's proto-
type of a new design, or the aerodynamicist's wind tunnel model of a new airplane. As one considers what is
common to these ideas of a model and what purposes are served, perhaps the concept begins to take shape.

2.1.2 Mental Model

Rather than further pursue the various types of physical models, let us consider another less obvious form
of model, the mental model. For example, the merchant who mentally speculates: "if I increase the price of
this article from x to y, the buyers will still buy enough that I will come out ahead," and the mother who
says, "if I spank my child for leaving his toys out, he will stop", are both using intuitive mental models of
incredibly complicated economic, sociological, and psychological systems that even experts don't agree on.
Freud, Skinner, Erikson and others have all produced models of human psychology that much of modern
therapy and advertising are based on. Indeed, re�ection indicates that much of human thought is involved
with mental model making and the use of these models for decision making, problem solving, or merely
pleasure.

The politician who tells the voters what will happen if certain policies are followed, the advertiser who
tells the potential buyer the results of using his product, and the preacher who predicts the consequences of
evil to his followers are all involved with the building and use of mental and verbal models.

1This content is available online at <http://cnx.org/content/m17671/1.5/>.
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20 CHAPTER 2. MODELS

Even the simple speculation of "if I wear these clothes I will look nice" is based on a model of how one's
friends will respond to one's dress. Indeed, most processes of experience can be viewed as model building,
experimentation, model modi�cation, etc. Further re�ection shows how much of one's mental activities can
be viewed as involved with modeling and how many academic disciplines are based on models, even though
the concept and process is poorly understood and seldom explicitly discussed.

It may seem that the idea of a model and its use is being made so general that it is useless. Our purpose
in being so general is to search for what is common in these diverse examples, and to extract it for study
and more e�cient use.

2.1.3 Mathematical Model

Rather than follow further examples of mental or verbal models, we will turn to another form of model:
the mathematical model. The incredible advances of the physical sciences and engineering disciplines have
resulted from the development and use of mathematical models. When one describes the relation between
the force applied to an object and its mass and acceleration by the familiar formula F = M ·A , one is using
a mathematical model of a physical phenomena. Here, mathematical functions are used to represent physical
qualities, so that the interrelationship can be described by equations. If these equations are fundamental
and if their solutions accurately simulate the actual phenomena, then they are given the special status of
"laws". Consider the cases of Newton's laws, Kircho�'s laws, Faraday's law, Boyle's law, and in other �elds,
Fechner's law (psychophysics), Paneto's law (economics), etc. Indeed, model formulation and veri�cation is
the basis of the so-called scienti�c method.

An important feature of the various types of models we have discussed is how one can move from one to
another. Consider the following hypothetical account of how a physical "law" was developed.

At some point in time it was noticed that if a heavy object was dropped, it fell down. As further
experience was accumulated, it was noticed that the object always fell in a straight line toward the earth.
Next, after closer observation, it was discovered that the object's speed increased as it fell. The next step
was a major one. It required curiosity, mathematical ability, and a real quantum jump to move from the
verbal model to a mathematical one where it was conjectured that the velocity was a linear function of time
after being dropped, V = Kt . This proved to be incredibly accurate, and thus, a "law" was discovered.

The use of mathematical models has been so successful in many areas that the concept of a model was
sometimes forgotten. Indeed, some models are so accurate that users can forget that they are dealing with
models and not the actual phenomenon. When we work in areas where accurate models are not available, a
good understanding of the modeling process becomes essential.

The �rst step in choosing a model is deciding what the purpose of the model will be and what questions
are being asked. It is obviously an advantage to use the simplest model possible to serve a particular purpose
but the danger that over-simpli�cation will destroy the validity of the model always exists.

The second step is the actual construction of the model. Here, the various theories, laws, relations, etc.
that apply must be used, and after that, the model requires that new relations be established. In other
words, while building the model, one often discovers what data should be collected and what experiments
must be performed, as well as what data is irrelevant or misleading. At this point, alterations are often
substantial in the model.

The third step is veri�cation or validation of the model. This usually involves some comparisons of
the model with the phenomenon it models. One must be very careful at this point to test all of the
characteristics the model should have, while remaining within the original goals and purposes set, not
violating the assumptions that were made. A common mistake is to use models outside the area for which
they were intended.

Veri�cation often involves applying the model to data that was not used in its construction to see if it
can explain the observations. If internal relations were used to derive some data, these can be compared
with observations. On the other hand, if the model were built by forcing agreement with the observations,
then the resulting implied internal relations can be examined for their validity.

All of these steps are done in a rather circular fashion with the attempted use of, and veri�cation of,
the model suggesting modi�cation, restructuring and reveri�cation, or in some cases, discarding the whole
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approach. Some re�ection will perhaps show that these are common ideas in modeling, and we try to
systematically apply them to the very interesting but very di�cult problem of modeling large groups of
people.
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Chapter 3

Dynamics1

3.1 Dynamics of Systems

In this module we will present several de�nitions and a language that will later be used to model social
systems. Although a complete and detailed presentation will not be made, the ideas covered are very
important for anything other than a super�cial understanding of dynamic models. Much of this material
grew out of what is called system theory and control theory. [9][16]

3.1.1 De�nitions

As we noted before, it is sometimes di�cult to give clear, precise de�nitions of some ideas. That is the case
for the de�nition of a system which sounds a bit vague but seems to be as good as possible.

A system is de�ned as a set of interrelated entities, variables, or ideas that have some common features
or purpose.

Examples of systems would be a car, a radio, a transportation network, a set of coupled equations, a
society, a family, etc. The system may be physical, biological, social, conceptual, or many other forms.

The dynamics of a system is the way the various variables of the system change and evolve with time.
The study of dynamics is an important part of physics, engineering, and economics. Indeed, the study of

change in history, psychology, etc. can be viewed as a study of dynamics, and when anyone makes predictions
about the future, he is certainly using a dynamic model whether he realizes it or not. There are many studies
of systems which are not dynamic models - these use static or equilibrium models and study relationships
where time variations are assumed not important. The mathematics often used in the study of system
dynamics are calculus and di�erential equations.

The structure of a system is the speci�cation of the components of importance and interest and the
description of the relations and interconnections within the system.

The choice of structures may be easy or very di�cult depending on the system. In many physical systems
the structure is fairly well developed, however, for social systems it is more complicated. The choice of age
groupings, economic groupings, etc. by a sociologist is the choice of structure for a particular system. Indeed,
much of the research in the social sciences has centered around structure with relatively little work being
done explicitly on dynamics. For our purposes, we need both.

3.1.2 Descriptions of Systems

There are two rather di�erent but complimentary descriptions that have been used with success in systems
analysis. One is an input-output or external approach, and the other is a state variable or interval approach.
Both have merits and will be brie�y described.

1This content is available online at <http://cnx.org/content/m17819/1.4/>.
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3.1.2.1 The Input-Output Description

Here there are three entities considered: the input x , output y , and the system s . Symbolically, this is
illustrated by

Figure 3.1

This has proven a very valuable approach that avoids internal details of the system that are of no interest
or are di�cult to describe.

There are three problems that can be formulated with this description:

1. Analysis: x and s given, �nd y ;
2. Synthesis: x and y given, �nd s ; and
3. Control: s and y given, �nd x .

In the modeling of systems and signals, one often has a partial description of all three, and they must be
completed in a way to be consistent.

3.1.2.2 The State Variable or Internal

In this case, a detailed description of the internal structure of a model is made. The idea of a "state" is very
important to dynamic systems, but is so fundamental as to be di�cult to de�ne. The situation if further
complicated by the fact that the word state is used in many di�erent ways in other areas.

The state of system is the present information about the past that allows one of predict the e�ect of the
past on the future. The variables that describe the state are called the state variables and the minimum
number of state variables is called the order (or dimension) of the system.

For example, if one is modeling a social system, in order to predict the future population, in addition
to other factors, one must know the present population; therefore, population would be a state variable.
Another example might be a second-order di�erential equation.

”
x +aẋ+ bx = 0
Here x (o) and ẋ (o) are needed to calculate x (t) ; therefore, they could be stat & variables. A mechanical

example would be a moving mass where one would have to know the position x and velocity v at some time
to predict its future position.

In addition to state variables, a system often has many variables that are derived from present values
of other variables, but do not require any past values. These are very important in the description of some
systems, and it is often very di�cult to distinguish between state and derived variables when initially trying
to set up a model for a complex system.

The di�culty in choosing state variables is further compounded by the fact that they are not unique.
(Their number is, however.) For example, in a system of equations, a change of variables could be carried
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out and the new variables used as states. In the mechanical example, one could choose v + x for one state
variable and 1

2v −
√

2x for the other, although it's hard to imagine why one would want to.

3.1.3 Deterministic and Probabilistic

Still another division of description is into those that use deterministic equations to relate the various system
variables and those that relate the statistics of the variables. These two approaches are complimentary. For
example, in describing a gas in a container, one can relate the gross characteristics of pressure, temperature
and volume by an algebraic equation; however, one must resort to statistics to describe an individual molecule.
In the case of the social model, it seems to also hold that individual people or small groups must be described
statistically, but the gross behavior of large aggregates can be described deterministically. This is certainly
not as clear-cut as for a container of gas, but it is what we will follow.

Indeed, not only is the decision between a deterministic and probabilistic model di�cult to make for a
social system, but the choice of structure, state variables, and many other factors are all di�cult and the
subject of much debate a long researchers. What this means, however, is the basic concepts and de�nitions
must be understood even better and used with even greater care.

3.1.4 Classi�cations

There are a number of rather common classi�cations of systems that prove useful. The two most important
are given here in terms of an input-output description.

A. A system is called linear if, and only if, the following two conditions hold. In an input x1 causes an
output y1, and an input x2 causes an output y2, then an input which is the sum of two inputs, x1 +x2

, must cause an output y1 + y2. This is called superposition. If the input x1 is scaled by an arbitrary
value a , then the resulting output must also be scaled by the same value a .

F = M ·A (3.1)

If x1 → y1 and x2 → y2 (3.2)

then (x1 + x2) → (x1 + y2) (3.3)

and ax1 → ay1 (3.4)

B. A system is called time-invariant or stationary if, and only if, the following is true for arbitrary t .

If x (t)→ y (t) then x (t+ T )→ y (t+ T ) .

3.1.5 Feedback

A particular structure [Luenberger 1979] which is so important that it warrants special discussion has the
feature that the output a�ects the input. This is illustrated by the following �gure.
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Figure 3.2

Feedback is often part of naturally occurring systems and it also is often a part of constructed systems.
The most common feedback system is probably the thermostat that uses a measured temperature to feedback
a controlling signal to a heater in an oven or room heating system. The �lling mechanism in the tank of a
toilet uses a �oat to feedback a measure of the water level to control the input valve. A person's blood sugar
level is controlled by a complicated biological feedback system. The power steering of a car, the auto-pilot
of an airplane, and the control of a satellite rocket are all examples of feedback.

An interesting model using feedback can be used to describe a bank savings account. Here the output can
be the amount of interest earned which is then fed back and added to increase the account. This feedback
is called compounding, and results in the rapid exponential growth of an account.

A similar model will be used to describe a population where the feedback signal is the number of people
added by births less the number of deaths. This forms the basis of the exponential predictions of population
growth, and we will explore it in detail later.

The basis of the free marketplace is based on feedback through price changes to cause the supply to
follow the demand.

While feedback is a useful concept, its e�ects become more di�cult to predict as the systems become
more complex. A simple example illustrates one problem. Consider a person adjusting the temperature of
his shower by the hot and cold valves. If there is a time delay introduced by a length of pipe between the
valves and the shower head, the person will over control. If the water is initially too hot, he will turn on
the cold water, but because of the delay, no e�ect is immediately felt so more cold water is turned on. This
continues until �nally the now very cold water reaches the shower head, whereupon the person starts the
same procedure of increasing the hot water. This oscillation will continue until the person "gets smart" and
allows for the delay. A similar problem can occur in college education because of the four-year delay between
the choice of a major and the graduation to a job.

A bit of re�ection begins to show the complicated nature of a social system will involve multi-variable
nonlinear systems with time delays and multiple feedback loops.
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Chapter 4

Exponential Growth1

Since it is the dynamic nature of a system that we want to model and understand, the simplest form will be
considered. This will involve one state variable and will give rise to so-called "exponential" growth.

4.1 Two Examples

First consider a mathematical model of a bank savings account. Assume that there is an initial deposit but
after that, no deposits or withdrawals. The bank has an interest rate ri and service charge rate rs that
are used to calculate the interest and service charge once each time period. If the net income (interest less
service charge) is re-invested each time, and each time period is denoted by the integer n , the future amount
of money could be calculated from

M (n + 1) = M (n) + ri M (n) − rs M (n) (4.1)

A net growth rate r is de�ned as the di�erence

r = ri − rs (4.2)

and this is further combined to de�ne R by

R = (r + 1) (4.3)

The basic model in (4.1) simpli�es to give

M (n + 1) = (1 + ri − rs) M (n) (4.4)

= (1 + r) M (n) (4.5)

M (n + 1) = R M (n) . (4.6)

This equation is called a �rst-order di�erence equation, and the solution M (n) is found in a fairly
straightforward way. Consider the equation for the �rst few values of n = 0, 1, 2, ...

M (1) = R M (0) (4.7)

M (2) = R M (1) = R2 M (0) (4.8)

1This content is available online at <http://cnx.org/content/m17672/1.3/>.

Available for free at Connexions <http://cnx.org/content/col10587/1.7>

27



28 CHAPTER 4. EXPONENTIAL GROWTH

M (3) = R M (2) = R3 M (0) (4.9)

· · · (4.10)

M (n) = M (0) Rn (4.11)

The solution to (4.4) is a geometric sequence that has an initial value of M (0) and increases as a function
of n if R is greater than 1 (r 0), and decreases toward zero as a function of n if R is less than 1 (r 0) .
This makes intuitive sense. One's account grows rapidly with a high interest rate and low service charge
rate, and would decrease toward zero if the service charges exceeded the interest.

A second example involves the growth of a population that has no constraints. If we assume that the
population is a continuous function of time p (t) , and that the birth rate rb and death rate rd are constants
( not functions of the population p (t) or time t ), then the rate of increase in population can be written

dp

dt
= (rb − rd) p (4.12)

There are a number of assumptions behind this simple model, but we delay those considerations until later
and examine the nature of the solution of this simple model. First, we de�ne a net rate of growth

r = rb − rd (4.13)

which gives

dp

dt
= rp (4.14)

which is a �rst-order linear di�erential equation. If the value of the population at time equals zero is po ,
then the solution of (4.14) is given by

p (t) = po ert po = p (0) (4.15)

The population grows exponentially if r is positive (if rb rd ) and decays exponentially if r is negative
(rb rd ). The fact that (4.15) is a solution of (4.14) is easily veri�ed by substitution. Note that in order
to calculate future values of population, the result of the past as given by p (0) must be known. ( p (t) is a
state variable and only one is necessary.)

4.2 Exponential and Geometric Growth

It is worth spending a bit of time considering the nature of the solution of the di�erence (4.4) and the
di�erential (4.14). First, note that the solutions of both increase at the same "rate". If we sample the
population function p (t) at intervals of T time units, a geometric number sequence results. Let pn be the
samples of p (t) given by

pn = p (nT ) n = 0, 1, 2, ... (4.16)

This give for (4.15)

pn = p (nT ) = prnTo e = po
(
erT

)n
(4.17)

which is the same as if

R = erT (4.18)
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This means that one can calculate samples of the exponential solution of di�erential equations exactly by
solving the di�erence (4.4) if R is chosen by (4.18). Since di�erence equations are easily implemented on a
digital computer, this is an important result; unfortunately, however, it is exact only if the equations are
linear. Note that if the time interval T is small, then the �rst two terms of the Taylor's series give

R = erT ≈ 1 + rT (4.19)

which is somewhat similar to (4.3). Another view of the relation can be seen by approximating (4.14) by

x (n + 1) − x (n)
T

= r x (n) , (4.20)

which gives

x (n+ 1) = x (n) + rT x (n) (4.21)

= (1 + rT ) x (n) (4.22)

having a solution

x (n) = x (0) (1 + rT )n (4.23)

This implies (4.21) also, and the method is known as Euler's method for numerically solving a di�erential
equation.

These approximations are used often in modeling. For population models a di�erential evuation is often
used, even though it is obvious that births and deaths occur at random discrete times and populations can
take on only integer values. The approximation makes sense only if we use large aggregates of individuals.
We end up modeling a process that occurs at random discrete points in time by a continuous time mode,
which is then approximated by a uniformly-spaced discrete time di�erence equation for solution on a digital
computer!

The rapidity of increase of an exponential is usually surprising and it is this fact that makes understanding
it important. There are several ways to describe the rate of growth.

If x = k ert , (4.24)

then
dx

dt
= k r ert (4.25)

or r =
1
x

dx

dt
. (4.26)

This states that r is the rate of growth per unit of x . For example, the growth rate for the U.S. is about
0.014 per year, or an increase of 14 people per thousand people each year.

Another measure of the rate is the time for the variable to double in value. This doubling time, Td , is
constant and can easily be shown to be given by

Td =
1
r

loge2 = 0.6931472
1
r

(4.27)

For example, doubling times for several rates are given by
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r Td

.01 70

.02 35

.03 23

.04 17

.05 14

.06 12

Table 4.1

The present world population is about three billion, and the growth rate is 2.1% per year. This gives

p (t) = 3 e0.021 t (4.28)

with p (t) measured in billions of people and t in years. This gives a doubling time of 33 years. While it
is easy to talk of growth rate and doubling times, these have real predictive meaning only if the growth is
exponential.

4.3 Two Points of View

There are two rather di�erent approaches that can be used when describing some physical phenomenon by
exponential growth. It can be viewed as an empirical description of how some variables tend to evolve in
time. This is a data-�tting view that is pragmatic and �exible, but does not give much insight or direction
on how to conduct experiments or what other things might be implied.

The second approach primarily considers the underlying di�erential equation as a "law" of growth that
results in exponential behavior. This law has various assumptions and implications that can be examined
for reasonableness or veri�ed by independent experiment. While perhaps not so important for the �rst-order
linear equation here, this approach becomes necessary for the more complicated models later.

These approaches must often be mixed. The data will imply a model or equation which will give direction
as to what data should be taken, which will in turn imply modi�cations, etc. The process where structure
is chosen and the parameters are chosen so that the model solution agrees with observed data is a form of
parameter identi�cation. That was how (4.28) was determined.

4.4 The Use of Semi-Log Plots

When examining data that has been plotted in fashion, it is often hard to say much about its basic nature.
For example if a time series is plotted on linear coordinates as follows
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Figure 4.1

it would not be obvious if it were samples of an exponential, a parabola, or some other function. Straight
lines, on the other hand, are easy to identify and so we will seek a method of displaying data that will use
straight lines.

If x (t) is an exponential, then

x (t) = k ert (4.29)

Taking logarithms of base e for both sides of (4.29) gives

log x = log k + rt (4.30)

If, rather than plotting x versus t , we plot the log of x versus t , then we have a straight line with a slope
of r and an intercept of log k . It would look like
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Figure 4.2

Actually using the logarithm of a variable is awkward so the variable itself can be plotted on logarithmic
coordinates to give the same result. Graph paper with logarithmic spacing along one coordinate and uniform
spacing along the other is called semi-log paper.

Consider the plot of the U.S. population displayed on semi-log paper in Figure 3. Note that there were
two distinct periods of exponential growth, one from 1600 to 1650, and another from 1650 to 1870. To
calculate the growth rate over the 1650 � 1870 period, we can calculate the slope.

r =
log p (t1)− log p (t2)

t1 − t2
(4.31)

=
log 107 − log 105

1823 − 1670
(4.32)

=
16.118 − 11.513

153
= 0.03 (4.33)

During that period, there was a 3% per year growth rate or, in other terms, a 23-year doubling time.
An alternative is to measure the doubling time and calculate r from (4.27). Still another approach is to

measure the time necessary for the population to increase by e = 2.72... The growth rate is the reciprocal
of that time interval. Derive and check these for yourself.

The data displayed in Figures 1, 2 and 3 illustrates exponential growth and the use of semi-log paper.
The books [7] [17] give interesting discussions of growth.
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4.5 Analytical versus Numerical Solutions

In some cases, there is a choice between an analytical solution in the form of an equation and a numerical
solution in the form of a sequence of numbers. A real advantage of an analytical form is the ability to easily
see the e�ects of various parameters. For example, the exponential solution of (4.12) given in (4.15) directly
shows the relation of the growth rate r in equation (4.12) to the exponent in solution (4.15). If the equation
were numerically solved, say on a digital computer or calculator using Euler's method given in (4.21) , it
would take numerous experimental runs to establish the same relations.

On the other hand, for complicated equations there are no known analytical expressions for the solutions,
and numerical solutions are the only alternatives. It is still worth studying the analytical solution of simple
equations to gain insight into the nature of the numerical solutions of complex equations.

4.6 Assumptions

The linear �rst-order di�erential equation model that is implied by exponential growth has many assumptions
that are worth noting here. First, the growth rate is constant, independent of crowding, food, availability,
etc. It also assumes that age distribution within the population is constant, and that an average birth and
death rate makes sense. There are many factors one will want to include e�ects of crowding and resource
availability, time delays in reproduction, di�erent birth and death rates for di�erent age groups, and many
more. In the next section we will add one complication the e�ects of a limit to growth.
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Chapter 5

Limits to Growth1

5.1 A Limit to Simple Growth: The Logistic Function

In the preceding sections we saw how the linear �rst-order di�erential equations lead to exponential solu-
tions. Both the unbounded nature of the solution and the assumption of a constant growth rate indicate a
modi�cation that will give more realistic modeling of observed population growths.

A. A Nonlinear Equation

It seems reasonable to assume under that many conditions the growth rate r would not remain constant,
but would decrease with increasing population. This might result from the e�ects of crowding and reduced
resources, or other physical and psychological factors on the birth and death rates. The simpliest functional
form one could assume would be a linear reduction of r as the population increased.

r = ro (1 − β p) (5.1)

Here ro is the rate for very small p where no limits have been felt. The term β gives the reducing e�ect of
p on r . This is seen by plotting r versus p .

1This content is available online at <http://cnx.org/content/m18163/1.3/>.
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Figure 5.1

Note the growth rate is maximum at ro for p equal to zero and linearly decreasing to zero when p is
equal to 1

β . The constant case is a special instance of (5.1) for β equal to zero. Now consider the population
equation with this new growth rate.

dp

dt
= r p (5.2)

= r
o (l − β p) p(5.3)

dp

dt
= ro p − ro β p2 (5.4)

This is now a nonlinear �rst-order di�erential equation with several interesting features. The solution of
(5.2) can be shown to equal

p (t) =
kerot

1 + βkerot
=

1
β + k−1e−rot

(5.5)

for

k =
p (o)

1 − p (o) β
(5.6)

This function is called a logistic or sigmoid, and is illustrated below for several initial values of p (o) .
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Figure 5.2

An alternate form is

ṗ = r
o (1 − p

k ) p(5.7)

where k is p (∞) , the asymptotic value of population, or the carrying capacity of the "system". This
requires k = 1

β .
There are several very interesting features of this function. For small initial populations, the initial

increase is very much like exponential. This is obvious since the negative term in (5.2) is small and the
equation looks linear. However, as p (t) grows, the growth rate goes to zero and a steady-state or equilibrium
is approached as a limit.

It it interesting to note that it is possible to normalize the logistic into a "standard" form. If we scale
both the amplitude and time by

x = β pτ = β t + log η k , (5.8)

then (5.5) becomes

x (τ) =
1

1 + e− τ
(5.9)

When plotted on semi-log paper, the logistic is an increasing straight line for small time, and becomes a
horizontal straight line for large time.

The use of the logistic to model simple population growth with a limit is shown in Figures 4, 5, and 6.
There have been many other applications of the logistic [8] [18] [20] [5] with some success and some failures.
Unfortunately, if one tries to use this model to predict the limiting value while the system is still in the early
stages of growth, a large error results since an exponential and a logistic look very similar in the early stages.

It is possible to manipulate the data so that a plot of it becomes a straight line. If the reciprocal of p (t)
in (5.5) is considered

l

p
= β + k−1 e−rot (5.10)

and the logarithm is taken

log

(
l

p
− β

)
= − log k − βt (5.11)
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we have a linear function. Unfortunately, trial-and-error must be used to �nd β since it appears on both
sides of the (5.11).

5.2 A More Complicated Limit to Growth

The (5.2) that gives rise to the logistic is the simpliest modi�cation to include the e�ect of a non-constant
r . Perhaps a more realistic relation of r as a function of p could be found. In general, the equation becomes

dp

dt
= f ( p) (5.12)

where f ( p) is a more complicated function of p. The nature of the solution will still be the same in the
sense that p (t) will move from an initial value monotonically toward a constant limit � there can be no over
or under shoots with the model. There may be more than one possible �nal steady-state value if f ( p) has
more than one zero.

Consider the growth rate to vary as a quadratic function of population rather than as a linear function
shown in (5.1). One particular form it might take could be

Figure 5.3

where

r = ro ( 1 + Bp − Cp2 ) (5.13)

This might be the model of a system where moderate increases in population increase the growth rate, but
higher values �nally cause the rate to drop as before. A situation where moderate levels allow male and
female members to �nd each other more often could lead to this model, or a process such as industrialization,
where e�ciency can increase with size to a point.

The resulting di�erential equation is �rst order, but now has a cubic nonlinearity.

dp

dt
= ro p + ro Bp

2 − r3o Cp (5.14)
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The solution looks somewhat like a logistic. It starts with low population and an exponential growth; then,
as the second term begins to dominate, the growth is super-exponential � faster than exponential. Finally,
the cubic term � the limit � causes an abrupt leveling o� to a constant equilibrium value of k .

If more complicated systems are to be modeled, modi�cation other than more complicated nonlinearities
must be used. Other modi�cation might include

a. Time delays
b. Use population age groups
c. Allow parameters to depend on other environmental variables or states.

The next generalization we will consider here will be the addition of another state variable. This allows a
much broader and more versatile system of equations and solutions.
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Chapter 6

Simulation1

6.1 Dynamic Simulation on a Digital Computer

If a system is modeled by a di�erential equation, and if the equations are numerically solved on a digital
computer or calculator, the system is said to be simulated on the computer. If the model is valid and
the numerical methods accurate, experiments can be performed on the computer simulation that might be
impossible to conduct otherwise.

Consider several examples that use the models already discussed. If a population is governed by a linear
�rst-order equation

dp
dt

= rp (6.1)

one would not be able to "solve" this equation on a computer. If, however, we use Euler's method as was
done in (14) by approximating the derivative as

dp

dt
=

p (nT + T ) − p (nT )
T

(6.2)

where time is considered at intervals of T ,

t = nT n = 0, 1, 2, ... (6.3)

This gives for (1) .EQ (34)

p (nT + T ) = p (nT ) + Trp (nT ) p (nT + T ) = (1 + rT ) p (nT ) (6.4)

If we include the time interval T in the functional notation by

p (nT ) = x (n) (6.5)

then (3) becomes

x (n + 1) = (1 + rT ) x (n) (6.6)

which is now in a form that one can easily calculate successive values of x (n) given any initial value. This
can be programmed on a computer or simply done on a hand calculator.

Next, consider the nonlinear equation that models a population with a simple limit given by (23).

dp

dt
=

(
1 − p

k

)
ro p (6.7)

1This content is available online at <http://cnx.org/content/m18164/1.2/>.
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Using Euler's method again gives

x (n + 1) = x (n) + Tro x(n) −
(
Tro
k

)
x(n)2 (6.8)

This equation is complex enough to illustrate several points; therefore, we will examine several numerical
solutions. (6.8) was programmed on a Tektronix 31 programmable calculator with a plotter automatically
plotting the solutions by drawing straight lines between successive x (n) .

First, consider a low-density growth rate of ro = 0.1 or 10% per year for an initial population of
po = 100 over a time period of 100 years. We will use for the reducing e�ect on the growth rate in (2), a
value of β = 0.0001 , which implies a carrying capacity for the system of k = 10, 000 . For the Euler
method, a time interval of T = 2 years is used, which means 50 calculations of (6) will be necessary for
the 100-year period.

The curves in Figure A are the output of the simulation for the above parameters and also for other
growth rates of 5% and 20%. Note the solution always approaching the same limit but requiring di�erent
amounts of time.

In Figure B, the model is run assuming several di�erent initial populations. Again, the solutions always
approach the limit of k , even if the initial population is greater than k .

Figure C shows the e�ects of various amounts of limiting by considering various values for the factor β ,
and therefore k , the carrying capacity. When the limit is removed (k = ∞), the growth is exponential.

These examples illustrate the kinds of questions that can be pursued by running experiments on the
computer simulation. There is one more point that should be considered. It has nothing to do with the
di�erential equation model (23) but with the numerical procedure, Euler's method. Consider the e�ects of
using various time intervals T while holding everything else constant. Figure D shows the results of this
experiment. The curve resulting from using a time interval of T = 0.2 years looks essentially the same
as the exact solution of the di�erential equation. The numerical solution deviates more as T is increased
until, for T = 20 years, it has lost the character of the exact solution. A method for checking to see if T
is su�ciently small is to try halving it until the change is small.

One last point should be made concerning this numerical simulation. Euler's method is the only ap-
proach to numerically solve (23) that has been discussed. That is not because it is the best � there are far
more e�cient and sophisticated methods � but that is not our subject here, so we will continue with the
straightforward algorithm of Euler.

The super-exponential logistic equation of (31) was simulated on the calculator and run with a low
population growth rate of ro = 0.1 , a maximum rate of M = .2 , and a carrying capacity of k =

10, 000 . This solution is shown in Figure E and compared with an exponential of the same ro , and a
simple logistic of the same ro and k . The model was run again with a maximum growth rate of M = .5 ,
and the results are shown in Figure F. Note the initial exponential growth which becomes super-exponential,
growing extremely rapidly, then abruptly leveling o� to an equilibrium.
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Chapter 7

Second Order Model1

7.1 Second-order or Two-state Variable Systems

In the last few sections, we discussed �rst-order models of various systems and studied the types of inter-
actions that could be modeled and the nature of the solutions of these models. Of the several indicated
generalizations that could be made, this section will consider adding another state variable, so that the
e�ects of two interacting variables can be used and studied. This will greatly increase the class of systems
we can model and the class of solutions that result. In addition, a very interesting set of classical problems
fall into this class with interesting solutions and interpretations.

To illustrate the general problem, consider a system that contains populations of two di�erent types with
distinctly di�erent characteristics. Assume these two populations have a strong e�ect on each other, as well
as being in�uenced di�erently by their environment, so that modeling them by a single total population
would not yield useful results. We must, therefore, have two separate state variables to describe the systems,
and this could perhaps be done in the following way.

dp1

dt
= f ( p1, p2) (7.1)

dp2

dt
= g ( p1, p2) (7.2)

Here the rate of change of population p1 is assumed to depend on both the populations p1 and p2 ; and
likewise, the rate of change of p2 is assumed to depend on p1 and p2 , but in perhaps a di�erent way.

Many types of interactions could be considered. It might be that p1 and p2 compete for the same source
of food or resources; it might be that p1 is a prey of the predator p2 ; or it could be that they both contribute
to the welfare of the other. These assumptions would be implemented in the choice of f and g to describe
the particular case. The best known classical models of these types were proposed by Lotka (1925) and
Volterra (1926). Later, Gause (1934) did further experimental and interpretative work. Most of this type of
work was done in population ecology.[19], [24].

A. The Simple Lotka-Volterra Competition Model

Consider the particular for for the two-variable model to be

dp1

dt
= a p1 − b p1 p2 (7.3)

dp2

dt
= c p2 − d p1 p2 (7.4)

1This content is available online at <http://cnx.org/content/m18165/1.2/>.
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44 CHAPTER 7. SECOND ORDER MODEL

This might be a simple model of two competing populations, where a and c are the net rate of increase
that would occur if the other population did not exist. The coe�cients b and d model the negative e�ects of
interaction on the rates of change as a measure of how often one encounters the other.

To simplify the mathematics, a change of variables will be made. Consider the rearrangement of (7.3)
into (

d

c

)
ṗ1 = a

( (
d

c

)
p1 −

(
b

a

)
p2

(
d

c

)
p1

)
(7.5)

(
b

a

)
ṗ2 = c

( (
b

a

)
p2 −

(
d

c

)
p1

(
b

a

)
p2

)
(7.6)

Now let x =
(
d
c

)
p1 and y =

(
b
a

)
p2 then, (7.5) becomes

ẋ = a (x − xy ) (7.7)

ẏ = c ( y − xy ) (7.8)

Note that x and y are related to p1 and p2 by simple constant multipliers or scale factors, and therefore,
the nature of the solution of (7.7) is the same as (7.3), but now there are only two parameters, a and c , to
consider. In fact, by allowing a change of scale of the time variable, it is possible to reduce the number of
parameters to one, but we will not do that. The problem of solving the coupled equation of (7.7) or, more
generally, of (7.1) can be approached three ways. In some cases, an analytical equation for the solution can
be found. This is always true if the equations are linear, but unfortunately, almost never true if they are
nonlinear. Another approach was the phase plane where one solution is plotted as a function of the other,
with time as an implicit variable. Very important characteristics of the solution can often be determined by
phase plane methods without actually �nding the solution. Finally, the equations can be numerically solved
by simulation on a digital computer using Euler's method or some other more e�cient algorithm.

B. The Phase Plane

The pair of equations in (7.1) can be reduced to a single equation by eliminating the time variable t . This
can be done by simply dividing one by the other to give

dp1

dp2
=

f ( p1, p2 )
g ( p1, p2 )

(7.9)

The solution of this equation is examined in the p1, p2 plane, which is called the phase plane.
As an example, consider the competition model in (7.7) in the phase plane

dx

dy
=
a

c

x− xy
y − xy

(7.10)

Solutions in the phase plane are
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Figure 7.1

The trajectory starting at A gives the value of x and y with time t , an implicit variable, indicated by
the values shown. If a di�erent initial mixture of populations had been assumed, e.g., B , then a di�erent
trajectory would result. Indeed, any initial mixture is a point on the phase plane, and the trajectories
indicate how they evolve in time. The more conventional time solutions are shown for the initial of A by
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Figure 7.2

and for B by
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Figure 7.3

Note the relation of the phase plane plots and the time plots. This particular problem will later be
examined in greater detail.

One might wonder why this peculiar representation of the solutions is the form of one variable considered
as a form of the other. This phase plane approach, although a bit unnatural at �rst, proves to be a very
powerful tool. It is used by many in the literature [19] [22] [24] [2] and is a standard mathematical tool. [4]
[6] It is worthwhile developing this concept before analyzing several physical systems.

Note that the phase plane contains all possible time plane plots for various mixtures. It can be shown
that if the system has unique solutions, then the phase plane trajectories cannot cross. This means that a
few key trajectories can be constructed which will make obvious what all other trajectorie will have to be.
For example, in the above competition model, the initial mixture always determines who the eventual winner
will be. Any initial mixture to the right of the line from the origin to C results in y increasing without bound
and x becoming extinct. Initial mixture to the left gives the opposite result.

There are several procedures that aid in the construction and interpretation of phase plane trajectories.
There are special points on the plane known as equilibrium points or singular points that are important.
If both dx

dt and
dy
dt in are zero, then x and y are constants and the system is in equilibrium. This means that

at these points both the numerator and denominator of (7.9) are zero. For the competition model of (7.10),
there is a singular point at x = 0 and y = 0 , and another at x = 1 and y = 1 . Singular points
may be stable or unstable depending on whether small perturbations away from the point tend back to it or
go away from it. Both points mentioned above are unstable.

A particular informative way of �nding the singular or equilibrium points is to consider what are called
partial equilibrium lines in the phase plane. The curve of all possible solutions of the equition

f ( p1, p2 ) = 0 (7.11)
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is called the partial equilibrium curve for population p1 . This is understood by considering the �rst
equation in (7.1) alone. The equation (7.11) implies dp1

dt = 0 , therefore, one side of this curve dp1
dt will

be positive and on the other side it will be negative. If a particular f = 0 curve was given by

Figure 7.4

for any given �xed p2 , p1 would move to the f = 0 partial equilibrium curve. This curve would,
therefore, give the e�ects of p2 on the equilibrium values of p1 . In other words, for a system controlled by
the �rst equation of (7.1) if p2 is given, the f = 0 curve will give the equilibrium value psub1 approaches.
.pp In fact, however, p2 is not �xed, but must obey the second equation in (7.1). If this equation is examined
separately, we have a second curve called the partial equilibrium curve for p2 given by

g ( p1, p2 ) = 0 (7.12)

A similar analysis of this equation shows the e�ects of p1 on the equilibrium values of p2, and can be
visualized by the following illustration of a g = 0 curve.
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Figure 7.5

If these two curves are considered simultaneously, then not only are the singular points determined by the
intersections, but the stability of the points and the nature and direction of the trajectories can be estimited
by the signs of ṗ1 and ṗ2 in the various regions. For these illustrated curves of f = 0 and g = 0, we have
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Figure 7.6

This determines the singular point, and the directions show that it is stable. Applying this to the
Lotka-Volterra competition model of (7.7) for the partial equilibrium curves gives

ẋ = a (x − xy) = 0 (7.13)

or

y = 1 (7.14)

and

ẏ = c ( y − xy) = 0 (7.15)

or

x = 1 (7.16)

In the phase plane, these are
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Figure 7.7

Another tool that is very useful and is related to the preceding discussion is the method of isoclines.[4]
Here we �nd curves in the phase plane where all the trajectories that cross that curve have the same slope.
The partial equilibrium curves are two isoclines. The f = 0 curve implies from (7.9) that the slope of all
trajectories along that curve is zero. The slope of all trajectories along the g = 0 curve is in�nite. If we
�nd the isocline for a slope of m , this is done from (7.9) by setting

f

g
= m (7.17)

For the competition model with a = c = 1 , we have

x − xy

y − xy
= m (7.18)

Solving for x as a function of y gives

x =
my

1 + (m − 1) y
(7.19)

The m = 0 isocline is y = 1 . The m = ∞ isocline is x = 1 . The m = 1 isocline is

x = y (7.20)
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and m = − 1 gives

x = − y

(1 − 2y)
. (7.21)

In the phase plane the isocline looks like

Figure 7.8

Note how the isoclines aid one in sketching or visualizing the phase plane solution trajectories.
This should be enough detail on this approach to allow application to the various two-variable models

that can be so interesting.

C. : Competition Models

We will now return to the competition model of (7.3) and examine it in more detail. Consider a situation
where the uninhibited growth rate of population p1 is 10%. This implies a = 0.1 in (7.3). Assume that
the negative e�ects of p2 are such that 100 members of p2 cancel the positive e�ects of one member of p1 .
>From the �rst equation of (7.3), we have

ṗ1 = ap1 − bp1 p2 = (a − bp2) p1 (7.22)
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If a = 0.1 , then b = 0.001. We also assume that p2 has the same self-growth rate, and p1 a�ects p2

in the same way that p2 a�ects p1 . This gives c = 0.1 and d = 0.001. The model becomes

ṗ1 = 0.1 p1 − 0.001 p1 p2 (7.23)

ṗ2 = 0.1 p2 − 0.001 p1 psb2 . (7.24)

Using Euler's method to convert these di�erential equations to di�erence equations, we see that

p1 (n + 1) = p1 (n) + T a p1 (n) − T b p1 (n) p2 (n) (7.25)

p2 (n + 1) = p2 (n) + Tc p2 (n) − T d p1 (n) p2 (n) (7.26)

These were programmed on a Tektronix 31 programmable calculator with an automatic plotter to give
the phase plane output shown in Figure G. The trajectories were generated by running the simulation
with various initial populations. For example, the lowest trajectory was run with an initial population of
p1 = 25 and p2 = 50. The next one used p1 = 30 and p2 = 35.

If a di�erent situation is considered where one population has a growth rate of 20% and the other 5% ,
but the interactions are still at a ratio of 100 , the equations become

ṗ1 = 0.2 p1 − 0.002 p1 p2 (7.27)

ṗ2 = 0.05 p2 − 0.0005 p1 p2 (7.28)

The solutions for this case are shown in Figure H. Here the results of the di�erent rates are rather startling.
The trajectory number 1 starts at p1 = 10 and p2 = 1 , yet p2 overcomes p1 . Trajectory number
2 starts at p1 = 16 and p2 = 1 , and p2 still wins; but when the initial values are p1 = 17 and
p2 = 1 , trajectory number 3 shows p1 wins For p2 = 500 and p1 = 200 or 240, trajectories
numbers 4 and 5 show p2 wins; but with p2 = 500 and p1 = 250 or 300, trajectories 6 and 7 show p1

wins. This exempli�es the very large di�erence a four-to-one growth rate ratio can make, and how critical
the outcome depends on the initial values. It also illustrate the power of the phase plane in describing the
model.

In the basic competition model described by (7.3), and when normalized, described by (7.7), we see
that even if the interactive terms are very small, one population always grows without limit and the other
becomes extinct. This describes a "survival of the �ttest" model, but the unlimited growth and no possibility
of coexistence seems unreasonable.

The next level of complication is the addition of a limit to growth in the same manner that the exponential
was changed to a logistic. A crowding or self-competition term is added to the simple competition model.
Consider now

ṗ1 = ap1 − bp1 p2 − e p2
1 (7.29)

ṗ2 = cp2 − dp1 p2 − f p2
2 (7.30)

Using the normalizing procedure that was used before on (7.3) reduces the number of parameters from six
to four:

ẋ = a x − a x y − k x2 (7.31)

ẏ = c y − c x y − Ly2 (7.32)
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where

x =
(
d

c

)
p1 k =

ec

d
(7.33)

y =
(

b

a

)
p2 L =

fa

b
(7.34)

Consider the partial equilibrium curves for this model.

f (x, y) = ax − axy − Kx2 = 0 (7.35)

x =
(a − ay)

K
(7.36)

g (x, y) = cy − cxy − Ly2 = 0 (7.37)

x =
(c − Ly)

c
(7.38)

On the phase plane, this becomes
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Figure 7.9

It is obvious that the character of this system depends on the relative values of a,b,K and L , and indeed
these are from rather di�erent possible systems.

We will �rst consider the case illustrated above where both limiting factors are relatively small.

L < c and K < a (7.39)

Note that as K and L approach zero, the system approaches the previously studied system. For this case,
there are three possible equilibrium or singular points. There is an unstable point at the intersection of
the two partial equilibrium curves, and a stable point at y = 0 , x = a

K , and another stable point
at y = c

L , x = 0 . In this case, as before, one or the other population always wins, depending on
initial conditions, and the remaining population dies to zero. There is now a limit reached by the winner and
indeed, the time plot of the winning population looks very similar to a logistic. For example, for particular
initial x and y , we have
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Figure 7.10

The phase plane trajectories are illustrated for the normalized variables x and y in Figure J. The terms
a and c are set equal to one, with K and L set equal to one-half. The winning population approaches 2 as
its equilibrium value, and the loser becomes extinct.

The second case to consider has strong self-limiting factors relative to the interactive terms

L > c and K > a (7.40)

The partial equilibrium curves in the phase plane are
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Figure 7.11

Here the signs of the derivatives in the various regions of the phase plane show that there is only one
stable equilibrium point at the intersection of the two curves. Here is a case of stable co-existence predicted
for a competition model. The phase plane trajectories are shown in Figure K for the normalized variables
where a = c = 1 and K = L = 2 .

The third case is not symmetric. It allows one population to have a stronger self-limiting feature, and
the other a stronger interactive term. This is given by

L < c and K > a (7.41)

The partial equilibrium curves in the phase plane are
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Figure 7.12

The equilibrium point at x = 0 and y = c
L is the only stable point. For this case, y always wins for

any non-zero initial values, and x always becomes extinct. Figure L illustrates the phase plane trajectories
for the case where a = c = 1 , K = 2 , and L = 1

2 .
The fourth case is similar to the third, but the roles of the two populations are reversed. The results are

similar with x always winning and approaching an equilibrium point of x = a
K and y = 0 . The phase

plane trajectories look like Figure L with the axes reversed.
The use of these competition models can be very interesting in what they say about the e�ects of the

various growth, interactive, and limiting parameters. Applications can be made in short time spans to
competing populations in population ecology, or over longer time spans to biological evolution. There are
many other possibilities of economic models or international models that could be pursued, but we now turn
to a very di�erent type of interaction to be modeled.

D . Predation & Prey Models

If the relation between two populations is not one of competition but one of one population preying on the
other, a very di�erent dynamic situation results. We �rst consider the simple Lotka-Volterra model where
(7.1) becomes

dp1

dt
= a p1 − b p1 p2 (7.42)

dp2

dt
= − c p2 + d p1 p2 (7.43)
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This represents a system where p1 is the population of the prey that has a growth rate a when there are
not predators. The parameter b is the negative e�ect of predation on p1 , and the product p1 p2 models the
frequency of encounter of the two. The population p2 is that of the predation who would die out at a rate
of c if there were no prey. The coe�cient d gives the positive e�ect of the prey on the predator, and again
p1 p2 models the frequency of encounter.

As was done before, if the populations are normalized by x
(
d
c

)
p1 and y =

(
b
a

)
p2 , then

(7.42) becomes

ẋ = a ( x − xy ) (7.44)

ẏ = − c ( y − xy ) (7.45)

The phase plane equation is

dx

dy
= − a

c

(x − xy)
( y − xy)

(7.46)

Using the method of isoclines by �nding the curves where the slope is constant shows a remarkable result.
First, consider the partial equilibrium curves

f (x, y) = a (x − xy) = 0 (7.47)

y = 1 (7.48)

g (x, y) = − c ( y − xy) = 0 (7.49)

x = 1 . (7.50)

On the phase plane, this is
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Figure 7.13

The solution trajectories in the phase plane are shown in Figure M. It can be shown [4] that for any
positive values of the parameters in (7.42), the solutions in the phase plane are closed nested curves that
enclose the singular point. The closed trajectories are called limit cycles, and they give rise to periodic or
cyclic function when displayed as a function of time. The example used assumed an unlimited growth rate
of the prey population p1 to be 5% per year. The death rate of the predator with no prey is set at 10% per
year. The interactive terms are set to be equal to the self rates

when p1 = 100 and p2 = 200 . This gives

ṗ1 = 0.05 p1 − 0.0005 p1 p2 (7.51)

ṗ2 = − 0.1 p2 + 0.0005 p1 p2 (7.52)

There are several interesting features of the solutions. For any initial mixture of population, a limit cycle
passes through it. The resulting oscillations have amplitude and frequency that depend on the starting
condition, and oscillations neither grow or decay. Unfortunately, the use of Euler's method destroys the
exact form of the solutions. Note that the trajectories did not exactly close on the left side of Figure M.
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They can be made to approximate the exact solution of (7.51) by choosing T very small � but that slows
down the calculations and can sometimes cause other numerical errors.

Time plots of these solutions are shown in Figure N for initial values of p1 = 200 and p2 = 50 .
In Figure P the initial values are p1 = 50 and p2 = 200. Compare the initial values, maximum and
minimum values, with the phase plane trajectories. Note that the period of the oscillation in Figure N is
91 years, and in Figure P, 110 years. The slight increase in amplitude of the oscillations is due to the Euler
algorithm, not the model. The time interval T was set at 0.2 years.

There are both interesting theoretical and practical aspects to this model. Serious error can occur when
one of the populations is small. Minor variations which are assumed to average out with large numbers, do
not. In many experimental veri�cations of this model, one of the populations will die out at a minimum
rather than regenerate. Also, the model is rather sensitive to small errors. The addition of small terms to
the basic equation (7.42) causes great change in the character of the solution. This model has been studied
in detail by population ecologists. [19] [21] [4] [22] [24]

We will next examine the e�ects on the simple predator-prey model of adding a crowding term as was
done on the competition model and the logistic model. Consider the model

ṗ1 = a p1 − b p1 p2 − e p2
1 (7.53)

ṗ2 = − c p2 + d p1 p2 − f p2
2 (7.54)

where the coe�cients e and f describe the negative e�ects of crowding and competition within the population
or perhaps cannibalism. These equations can be normalized as done before to the form

ẋ = ax − axy − Kx2 (7.55)

ẏ = cx − cxy − Ly2 (7.56)

The e�ects of the added terms are rather dramatic. The partial equilibrium curves are shown in the following
phase plane.

This assumes that a
K 1 . The singular points are denoted by a circle. The singular points at the origin

and at x = a
K , y = 0 are unstable, while the one at the intersection of the two curves is stable.

The equations were programmed with a = c = L = 1 and K = 0.5 . The trajectories in
the phase plane are shown in Figure Q. Compare these results with the derivative signs and singular point
locations found above. Note that if K = L = 0 , the two partial equilibrium curves become vertical
and horizontal, giving the same results as found earlier in Figure M. Solutions of this model are shown as
a function of time in Figure R for initial values of x = 1 and y = 2 , in Figure S for x = 0.3 and
y = 2 , and Figure T for x = 2.5 and y = 0.3 .

Note the relations of these time curves to the phase plane trajectories in Figure Q. In all cases, there
are "overshoots" and "undershoots" as the populations interact, but they �nally settle down to a constant
co-existence that is the same for any initial condition.

The model is changed by removing the limiting term on population y by setting L = 0 . This causes the
y partial equilibrium curve to become horizontal; the resulting phase plane trajectories are shown in Figure
U. The results are similar to those in Figure Q, but there is more oscillation before the �nal equilibrium is
reached. If a limiting factor is made large by setting L = 4 , the phase plane trajectories of Figure V
result, giving very little oscillation.

A rather di�erent situation results if the parameters are such that a
k 1 . In this case, the intersection

of the partial equilibrium is in the second quadrant which has no physical meaning. In the �rst quadrant
where populations are positive, the equilibrium point at x = a

K , y = 0 is the only stable one. This
was programmed for ac = 1 and K = 2. The phase plane trajectories are shown in Figure W, and the time
solution for initial values of x = 1.5 and y = 1 in Figure X.

For these conditions, the predator dies out and the prey self-limits in a manner similar to the logistic.
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By choosing more complicated interaction functions for the f (p1, p2) and g (p1, p2), it is possible to obtain
other types of solutions. For the simple case with no limiting in (7.42), the partial equilibrium curves were
vertical and horizontal straight lines and the trajectories were closed. With limiting added in (7.53), the
curves remained straight, but were no longer ecessarily vertical or horizontal, and the solution trajectories
were no longer closed, but would either spiral or smoothly move to an equilibrium point. Although not
illustrated here, it is possible to use a model of limiting similar to that will cause a single stable limit cycle
to occur, that all trajectories starting outside of it would spiral in to it, and all starting inside of it would
spiral out to it. This would give a steady-state oscillation as a time function. Perhaps this type of model
could be used to explain some of the cyclic variations that occur in business and economics. Much more
work could be done on both the mathematics and interpretation of this predator-prey type system, but we
will move on to others now.

E. Simple Non-renewable Resource Model

Here we assume a simple system consisting of a population y that depends on, and consumes, a resource that
cannot be replaced. The equations are somewhat similar to the predator-prey model, but the prey could
grow and the resource here cannot. If x is the amount of resource, and it is distributed in such a way that
the consumption by y is modeled by the product xy, the normalized equations are:

ẋ = axy (7.57)

ẏ = − cy + cxy (7.58)

The partial equilibrium curves in the phase plane are
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Figure 7.14

The phase plane trajectories are shown in Figure Y. This uses a = c = 1.
Note that the resource monotonically decreases while the population may or may not initially increase,

but in any case, it ultimately dies out. An interesting result of this model is that there is some resource left
after the population is gone. This is caused by the assumption that the distribution is such that consumption
is governed by the product xy. If it is assumed that the resource is easily accessible, a better resource model
might be

ẋ = − ay (7.59)

The nature of the solutions of this system is left to the reader.

F . An Arms Race Model

We will now move into rather di�erent systems to see how models might be applied. The history of application
of dynamic models to problems such as national armament is fairly new, but perhaps older than most realize.
[3][25]

A simple linear model is the following

ẋ = − ax + by + f (7.60)

ẏ = − cy + dx + g (7.61)
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where the state variables x and y are measures of the arms level of two nations. The coe�cients a and c
are measures of con�dence or expense that cause a decrease in military expenditures; b and d are the e�ects
of the opponent's arms level on ones military build-up. The constants f and g represent the minimum level
that would be maintained even if the opposition disarmed.

There are two general cases possible. If the situation is such that ac>bd, then the partial equilibrium
curves look like

Figure 7.15

The signs of the derivative show that the singular point is stable. This states that the arms race stops at
a stable level for this case. If, on the other hand, the conditions are such that bd>ac, the curves look like.

Available for free at Connexions <http://cnx.org/content/col10587/1.7>



65

Figure 7.16

Here, there is no stable point, and the armament levels of both nations increase without limit.
This model is linear so that analytical expressions for the solution can be found, and computer simulation

is unnecessary. On the other hand, the model is too simple to be realistic, and a more reasonable one would
be nonlinear. Again, while these models can be interesting, they leave out too many other state variables to
be used for more than gaining insights.

G. Models of Hostility and Friendliness

While it is certainly easier to model and measure quantitative variables such as population, food, or money,
it is also possible to apply dynamic modeling techniques to more subjective variables involved with attitudes
and feelings. These variables must be quanti�ed in some way that is obviously going to be somewhat
subjective. Even though this process is di�cult and subject to challenge, it must be done if more complete
models of social systems are to be developed. This becomes apparent when, in trying to chose the state
variables for a system, it is necessary to know how a group of people feel about another variable to predict
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their actions. One accepted example is the practice of assigning a monetary value to the good will of a
company.

As an example, we will consider the dynamics of feelings between two populations in terms of their
friendliness or hostility. [2] Let x be the measure of friendliness of population p1 toward population p2, and
y the friendliness of p2 toward p1. Negative friendliness is considered hostility. The equations are

ẋ = f (x, y) (7.62)

ẏ = g (x, y) . (7.63)

The determination and interpretation of f and g is a bit more di�cult here. Recall from Section B the
de�nition of partial equilibrium curves. The f (x, y) = 0 curve in the phase plane gives the equilibrium values
of x for a �xed y. For this model, f (x, y) = 0 gives the degree of friendliness x that will be approached by
p1 for an independently set amount of friendliness y of p2 toward p1. Consider the following case:

Figure 7.17

Here, if y is neutral, then x become neutral. If y is friendly, then x is friendly. As y becomes more
friendly, x increases to a point and then levels o� at a maximum amount of friendliness. As y becomes
hostile, x responds likewise and �nally levels o� at a maximum amount of hostility.

Now consider the g (x, y) = 0 curve which is the p2 response to p1. This is shown by
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Figure 7.18

Population p2 is naturally more friendly than p1. It is friendly even if p1 is neutral, as is shown by point
A. Only after p1 becomes fairly hostile does p2 begin to return with hostility as shown by point B.

Given these relations and considering the signs of the derivatives, it is seen that the singular point at C
is a stable equilibrium point.

Consider a di�erent set of characteristics where a population would initially return a large amount of
hostility a hostile opponent, but after a certain level, would submit or surrender by having a reactionary
response to a very hostile situation. This might be described by
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Figure 7.19

Another characteristic is to have almost no response up to a certain level, then to react suddenly as
described by:

Many interesting models can be posed and the resulting solutions examined in the phase plane. In some
cases, the results are insensitive in the sense that small changes in the partial equilibrium cause only little
change in the solutions. Other cases are very sensitive.

A very important aspect of this approach to modeling is the dynamic description. When the trajectories
or time solutions are found, not only are the equilibrium points found, but how they are reached is predicted.
In some cases, the e�ects of a .... more important than the �nal value. Also, sometimes the time necessary
to achieve a certain condition is as important as the condition itself.

H. Malthus Revisited

Reading, in this day and time, the 1798 essay by T.R. Malthus, one is struck by both the insight and the
naite of this very in�uential statement. [25] Malthus saw the possible dire consequences of an increasing
population in a �nite environment. His predictions of doom were based on the assumption that the world
population increases according to a geometric sequence, while the food increases according to an arithmetic
sequence. Stated in our terms, he assumed population increases exponentially and food linearly. The fact
that world food production has more or less kept up with the population has lead critics to discount Malthus
and his followers as irrelevant doomsday prophets. In fact, some feel this pessimistic view is not irrelevant,
it is dangerous. The strong critics, known as technological optimists, assume that the factors that have
prevented Malthus' predictions from coming true so far will continue to so do. [14] In fact, they claim that
growth is not the problem, it is the solution. Growth has given us the highest material standard of living by
our abilities of growing faster than our problems.

Our purpose in this treatise is not to take sides, but to suggest a di�erent way of looking at our situation
that will give more understanding and insight. Malthus based his prediction on observed and assumed

Available for free at Connexions <http://cnx.org/content/col10587/1.7>



69

growth patterns of population and food. If one looks at the underlying models that might support these
assumptions, the population might come to be modeled by an equation similar to (8). One is hard-pressed
to explain his assumed food growth, and that has indeed been the �aw in his assumptions.

The technological optimists likewise have implied models to obtain their predictions. The costs of
continued economic and technical growth must be considered in any realistic model. A bit of re�ection shows
that the question is not whether to use a model or not, but to determine what kind of model to use and
whether it will be examined and debated explicitly.

Very interesting results have been obtained in the preceding sections on applying two-variable models to
various systems of interest to us. It is a valuable exercise to try to better model world population and food
than Malthus did. Very soon one discovers (or should discover) that the systems are too complicated to be
described by any two-state variables. Unfortunately, when using higher order models, many of our analytical
methods no longer work. We lose the powerful tool of the phase plan. Second-order systems are useful to
gain insight into simple systems with relatively simple interactions, but now we will have to rely primarily
on computer simulation to give solutions of the resulting third and higher order models.
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Chapter 8

Higher Order Model1

8.1 Higher-Order Models

Once it becomes necessary to include more than two state variables in a model, and if the interactions are
nonlinear, the analytical and phase plane techniques can no longer be used. This section will consider several
higher-order models and use digital simulation as the tool for analysis. The �rst example will be a rather
logical extension of some of our earlier population models.

A. Population Models with Age Speci�c Birth and Death Rates

Even cursory examination of the assumptions behind the population model assumed in Section IV show
them to be unrealistic. The model

dp

dt
= rp (8.1)

assumes r to be the di�erence between the birth rate and death rate, and that these rates are not a function
of time or population.

An improvement on this model would allow di�erent birth and death rates to be assigned to members
of the population of di�erent ages. This means that the population will have to be divided into groups with
similar rates, and that the number of groups necessary will be the number of state variables required.

For example, let p1 be the population of people between zero and ten years of age, p2 the population of
those from eleven to twenty, p3 those from twenty-one to thirty, etc. Let b1 be the average birth rate of p1 ,
and b2 the rate for p2 , etc., with d1 being the average death rate of p1 , etc. Assume the maximum possible
age to be one hundred. The equations for this model are given by

p1 (n + 1) = b1 p1 (n) + b2 p2 (n) +
... b10 p10 (n) p(n + 1) = (1 − d1) p1(n) p2(n + 1) = (1 − d2) p2(n) ···p10(n + 1) = (1 − d9) p9 (n) , (66)

(8.2)

where the time interval represented by each successive value of n is the same as that for the age span for
each population group, i.e., ten years. Likewise, the birth and death rate are numbers per ten-year period.
The equations in (8.2) can be described by a �ow graph, illustrated below for only three sections.

1This content is available online at <http://cnx.org/content/m18166/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10587/1.7>

71



72 CHAPTER 8. HIGHER ORDER MODEL

Figure 8.1

These equations can be easily programmed and solved on a computer, but because they are linear, there
are some interesting properties that can be worked out analytically. They are best seen by writing as a
matrix equation.

[ p1 (n + 1) p2 (n + 1) p3 (n + 1) p4 (n + 1) 3dotp10 (n + 1) ] =
[ b1 (1 − d1) 003dot0b20 (1 − d2) 0 0...... ...b90 above (1 − d9) b100 3dot 0 ] [ p1 (n) p2 (n) p3 (n) 3dot p10 (n) ]

(8.3)

In compact vector notation, this becomes

P
_[U+0332]

(n + 1) = A P
[U+0332]_

(n) (8.4)

>From this expression, it is easily seen that the population distribution after n times ten years from some
initial population distribution Punder (0) is given by

P
_[U+0332]

(n) = An P
[U+0332]_

(0) (8.5)

There are several interesting observations for the readers with a knowledge of matrix theory. After several
steps of n , the age distribution will assume a form given by the eigenvector of the largest eigenvalue of A .

After several steps, the age distribution will stop changing and this eigenvector is called the stable age
distribution, and this largest eigenvalue is the stable growth rate if the eigenvalue is greater than one
(decay rate if is is less than one). The problem is a bit more complicated if the eigenvalues are complex
(where oscillations occur).

It is possible to modify the equations of (8.2) to allow for shorter T in Euler's method than the span
of ages in a population group, and to allow di�erent spans for di�erent groups. Let T be the time interval
between each calculation of new levels. Let Si be the span of ages for the group pi . Consider the population
group p2 . During one time interval T , the number that dies is d2 p2 , the fraction that advances to the next

group is
(

T
S2

)
times those that do not die ( 1 − d2 ) p2 , and the rest

(
1 − T

S2

)
( 1 − d2) p2
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stay in the group. The equations become

P1 = (n+ 1) = b1p1 (n) + b2p2 (n) + ... (8.6)

P2 (n+ 1) =
(
T

S1

)
(1− d1)P1 (n) + (1− d2)P2 (n) (8.7)

PM (n+ 1) =
(

T

SM−1

)
(1− dM−1)PM−1 (n) +

(
1− T
SM

)
(1− dM )PM (n) (8.8)

The birth rates bi are the number of births per initial value of population in a group pi per time interval
T . The death rate is likewise per time interval T .

This is a rather general formulation that allows non-equal age grouping and short time interval without
requiring a high order. The system can be posed in matrix form as before. The main limitation on this
approach is that it is linear. In general, the various birth and death rates will depend on crowding and
other environmental and social factors that are assumed constant here. Even so, insight can be gained into
population growth by experiments on these simple linear models.

B. A Model of the World

One of the most interesting and controversial applications of dynamic modeling is the work of J. Forrester at
Massachusetts Institute of Technology on a simulation of the world. In 1970 at the request of an international
group called the Club of Rome, Forrester developed a �fth-order model of the work using what he calls
"system dynamics," methods that had previously only been applied to industrial and urban systems. The
preliminary results were published [13] in 1971, and further work done by his colleague Dennis Meadows
was published [10] in 1972. The response to this work was incredible. There has been a �ood of articles in
newspapers, popular magazines, and scholarly journals � some in praise and others in condemnation. Most
have been super�cial and emotional. There is, however, one interesting serious response published by a group
in England [15] in 1973.

The state variables chosen by Forrester are:

N population

C capital

A agriculture

P pollution

R non-renewable resources

Table 8.1

The model then assumed the form

Ṅ = f1 ( N, C, A, P, R )

Ċ = f2 ( N, C, A, P, R )

Ȧ = f3 ( N, C, A, P, R )

Ṗ = f4 ( N, C, A, P, R )

Ṙ = f5 ( N, C, A, P, R )

(8.9)

In one sense, this work is a logical extension of the dynamic modeling discussed in the earlier sections
of this paper, and Forrester's formalism is nothing more than using Euler's method to solve simultaneous
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di�erential equations. In another sense, his bold use of these methods represents a distinct departure from
the specialized models that the demographer, economist, etc. have used in their separate disciplines.

There are several features of Forrester's approach that should be understood. The functions f1 , f2 , etc.
are developed in a complicated way using the theories and empirical results of specialists in those areas.
This generally means that there are numerous intermediate variables de�ned and used, both for insight and
because the data occurs that way. One should not confuse these with the state variables, however. Forrester
also uses tables rather than functions to implement the fi in the simulation. These are usually easier to
handle by non-mathematicians, and again in the form that empirical relations are often known.

A version of the world model has been programmed in APL on an IBM 370 at Rice. The details of this
program and instructions on its use are included in the appendix. Examples of the results of the model are
given in [13] and [10] and a criticism in [15].
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Supplementary Figures1

Figures for the module on second order systems.

1This content is available online at <http://cnx.org/content/m18167/1.2/>.
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Figure 9.1
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Figure 9.2
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Figure 9.3
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Figure 9.4
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Figure 9.5
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Figure 9.6
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Figure 9.7
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Figure 9.8
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Figure 9.9
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Figure 9.10
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Figure 9.11
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Figure 9.12
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Figure 9.13
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Figure 9.14
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Figure 9.15
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Figure 9.16
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Figure 9.17

Available for free at Connexions <http://cnx.org/content/col10587/1.7>



93

Figure 9.18
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Figure 9.19
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Figure 9.20
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Figure 9.21
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Figure 9.22
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Figure 9.23
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Figure 9.24
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Figure 9.25
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