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INSTRUCTOR’S MANUAL

CHAPTER

1 Introduction to 
Statistics

Learning Objectives
The study of this chapter should enable you to:
❖	Define the meaning of Statistics and other popular terms widely used in statistics
❖	Describe the types of statistics—descriptive and inferential
❖	Describe the sources of data, the types of data and variables
❖	Understand the different levels of measurement
❖	Describe the various methods of collecting data

Key Teaching Points
1.1	 What is Statistics?
•	 ‘Statistics’ is a science that involves the efficient use of numerical data relating to groups of 

individuals (or trials). 
•	 Related to the collection, analysis and interpretation of data, including data collection design in 

the form of surveys and experiments. 
•	 Defined as the science of:

¤	 Collecting
¤	 Organizing
¤	 Presenting
¤	 Analyzing 
¤	 Interpreting numerical data to efficiently help the process of making decisions

•	 A person who works with the applied statistics (the practical application of statistics), and is 
particularly eloquent in the way of thinking for the successful implementation of statistical 
analysis is called a ‘statistician’. 

•	 The essence of the profession is to measure, interpret and describe the world and patterns of 
human activity in it both in the private and public sectors.

•	 Those involved in marketing, accounting, quality control and others, such as consumers, sports 
players, administrators, educators, political parties, doctors, etc. on the other hand, tend to widely 
use the outcomes of various statistical techniques to help make decisions.

•	 Population size refers to a very large amount of data where making a census or a complete 
sampling of all of the population would be impractical or impossible.

•	 A sample is a subset of the population.
•	 Samples are collected and statistics are calculated from the samples in order to make conclusions 

about the population.
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1.2	T ypes of Statistics 
•	 Two types of statistics:
	 1.	 Descriptive statistics
	 2.	 Inferential statistics
•	 Descriptive statistics explains the sample data whereas inferential statistics tries to reach conclusions 

that go beyond the existing data.

1.2.1	 Descriptive Statistics
•	 Statistical methods used to describe the basic features of the data that have been collected in a 

study. 
•	 Provide simple summaries about the data and the measures. 
•	 Together with simple graphics analysis, they form the basis of virtually every quantitative analysis 

of data.
•	 Use descriptive statistics simply to describe what’s going on in our data. 
•	 Used to present quantitative descriptions in a manageable form. 
•	 Help us to facilitate large data in a way that easily makes sense. 
•	 Each statistic reduces large data into a simple summary. 

1.2.2	 Inferential Statistics
•	 Methods used to find out something about a population based on a sample taken from that 

population.
•	 Also called statistical inference or inductive statistics.
•	 Most of the major inferential statistics come from a general family of statistical models known as 

the General Linear Model
¤	 Includes the t-test
¤	 Analysis of variance (ANOVA)
¤	 Regression analysis
¤	 Multivariate methods like factor analysis, multidimensional scaling, cluster analysis, discriminant 

function analysis, etc.

1.3	S ources of Data 
•	 Two sources of data: ‘primary data’ and ‘secondary data’. 
•	 Researchers conduct various research projects using questionnaires addressed directly to 

respondents, and their responses are known as the primary data.
•	 Other studies involving the use of data collected by others, such as information from census and 

earlier findings are also used by researchers—called secondary data.
•	 Primary data offer information tailored to specific studies, but are usually more expensive and 

takes a longer period to process.
•	 Secondary data are usually less expensive to be acquired and can be analyzed in a shorter period.

1.3.1	 Primary Data 
•	 ‘Primary data’ is the specific information collected by person who is doing research (researcher). 
•	 Researchers collect data through surveys, interviews, direct observations and experiments.
•	 Essential to all areas of study because it is the original data of an experiment or observation that 

has not been processed or altered. 
•	 Primary data can be prospective, retrospective, interventional or observational in nature. 
•	 Prospective data is collected from subjects in real time
•	 Retrospective data is collected from archival records. 
•	 Retrospective primary data provides information on past circumstances or behaviours.
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•	 Interventional primary data can be gathered after the interventions of interest have been 
prospectively delivered, manipulated or managed. 

•	 Observational primary data is collected by monitoring an intervention of interest without 
intervening in the delivery of the intervention.

Advantages: 
	 1	 Researchers can decide the type of method they will use in collecting the data and how long it will 

take them to gather that particular data. 
	 2	 Researchers can focus the data collection on specific issues of their research and enable them to 

collect more accurate information. 
	 3	 Researchers would know in detail how the data were gathered and hence, will be able to present 

original and unbiased data.

Disadvantages: 
	 1	 Primary data collection consumes a lot of time, effort and cost; the researchers will not only need 

to make certain preparations, in addition, they will need to manage both their time and cost 
effectively

	 2	 Researchers will have to collect large volumes of data since they will interact with different people 
and environments; also they will need to spend a lot of time checking, analyzing and evaluating 
their findings before using such data. 

1.3.2	 Secondary Data 
•	 Any material that has been collected from published records, such as newspapers, journals, research 

papers and so on. 
•	 Sources of secondary data may include information from the census, records of employees of a 

company, or government statistical information such as Malaysia gross national income (GNI) in 
different sectors and many others.

•	 Easily available and cheap. 
•	 Available for a longer period of time.

Advantages: 
	 1	 Using data from secondary sources is more convenient as it requires less time, effort and cost. 
	 2	 Secondary data helps to decide what further researches need to be done.

Disadvantages: 
	 1	 Secondary data may have transcription errors (reproduction errors). 
	 2	 Data from secondary sources may not meet the user’s specific needs.
	 3	 Not all secondary data is readily available or inexpensive.
	 4	 The accuracy of the secondary data can be questionable.

1.4	T ypes of Data and Variables
•	 ‘Data’ refers to qualitative or quantitative attributes of a variable or set of variables.
•	  A variable is defined as any measured attribute that varies for different subjects.
•	 Two basic types of data
	 1.	 Quantitative data
	 2.	 Qualitative data

1.4.1	 Quantitative Data 
•	 Data that measures or identifies based on a numerical scale. 
•	 Can be analyzed using statistical methods

¤	 Values obtained can be illustrated using diagrams such as tables, graphs and histograms. 
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•	 Variable being studied can be reported numerically and is called a quantitative variable while the 
population is called a quantitative population. 

•	 Quantitative variables can be further classified as either discrete or continuous. 
•	 Discrete variables can assume only integer values (whole number such as 0, 1, 2, 3, 4, 5, 6, etc.). 
•	 Discrete variables result from counting. 
•	 Continuous variable can assume any value over a continuous range of possibilities.

¤	 For example:
✓	 Time (05:31:24 a.m)
✓	 Temperature (35.5 °C)
✓	Weight (85.6 kilograms)
✓	 Height (167.5 cm)
✓	 Speed (183.7 km/h), etc. 

•	 Continuous variables result from measuring something. 

1.4.2	 Qualitative Data 
•	 Provide items in a variety of qualities or categories that may be ‘informal’ or even using features 

that is relatively obscure, such as warmth and taste.
•	 Although, the data that was originally collected as qualitative information, it can be quantitative if 

it is further simplified using the method of counting.
•	 Can include the obvious aspects such as gender, age or occupation.
•	 Can also be in the form of pass-fail, yes-no, or various other categories. 
•	 If qualitative data uses categories based on ideas of subjective or non-existent, it is generally less 

valuable for scientific study than quantitative data.
•	 Sometimes it is possible to obtain quantitative estimates of the qualitative data.

¤	 For example:
✓	 People can be asked to rate their perceptions about their interest in a sport based on the 

Likert scale, that is, a rating or a psychometric scale commonly used in questionnaires.
✓	 If a 10-point scale is used, ‘1’ would signify ‘strongly agree’ and ‘10’ would indicate ‘strongly 

disagree’.
•	 When the characteristics or variable being studied is non-numeric (categorical), it is called a 

qualitative variable or an attribute, while the population is called a qualitative population. 
•	 When the data are qualitative, we are usually interested in:

¤	 How many?
¤	 What proportion fall in each category?

•	 Qualitative variables are measured according to their specific categories and are often summarized 
in charts.
¤	 For example:

✓	 Gender is measured as ‘male’ or ‘female’.
✓	Marital status is measured as ‘single’ or ‘married’, and so on.

1.5	L evels of Measurement
•	 Can be classified into four categories:

¤	 Nominal
¤	 Ordinal
¤	 Interval
¤	 Ratio

1.5.1	 Nominal Level 
•	 The most ‘primitive’, ‘the lowest’, or the most limited type of measurement.
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•	 In this level of measurement,
¤	 Numbers or even words and letters are used to categorize the data. 

•	 Suppose there are data about students who sat for an examination.
¤	 Hence, in a nominal level of measurement, 

✓	 Students who passed the examination are classified as ‘P’
✓	 Students who failed can be classified as ‘F’

1.5.2	 Ordinal Level 
•	 Describes the relationship within a group of items in some specified order. 
•	 For example, 

¤	 For a student with the highest marks in a class—he will be placed as the first rank. 
¤	 Then, a student who received the second highest marks will be placed as the second rank, and 

so on.
•	 This level of measurement indicates an approximate ordering of the measurements. The difference 

or the ratio between any two types of rankings is not always the same along the scale.

1.5.3	 Interval Level
•	 Includes all the features of ordinal level (classification and direction). 
•	 States that the distances between intervals are the same along the interval scale from low to high 

(constant size).
•	 A popular example of this level of measurement is temperature in Celsius.

1.5.4	 Ratio Level
•	 Is the ‘highest’ level of measurement
•	 Has all the characteristics of interval level.
•	 Major differences between interval and ratio levels of measurement are:
	 (1)	 Ratio-level data has a meaningful zero point
	 (2)	 Ratio between any given two numbers is meaningful
•	 Divisions between the points on the scale have an equivalent distance between them
•	 Rankings assigned to the items are according to their size.
•	 Money is a good illustration,

¤	 Having zero ringgit means ‘you have none’
•	 Weight is another ratio-level measurement. 

¤	 If the dial on a scale is zero, there is a complete absence of weight.
¤	 If you earn $40 000 a year and Abu earns $10 000, you earn four times what he does.

1.6	 Methods of Collecting Data
•	 Data collection is an important aspect of any type of research study as inaccurate data collection 

can impact the results of a study and ultimately lead to invalid results.
•	 Investigator (researcher) must first of all, define the scope of his inquiry in every detail.
•	 The probable cost, time and labour required must next be estimated.
•	 If a complete coverage of information is not possible, for example, in market research, the sample 

size and method of sampling will have to be determined. 
•	 Investigators collect primary data directly from the original sources. 
•	 They can collect the necessary data appropriate for specific research needs, in the form they need. 
•	 In most cases, primary data collection is costly and time-consuming. 
•	 For some areas within social science research, such as socio-economic surveys, studies of social 

anthropology, market research, etc., necessary data are not always available from secondary 
sources, and they must be directly collected from the original or primary sources. 
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•	 In cases where the available secondary data are not suitable, again, the primary data should be 
collected. 

1.6.1	 Methods of Primary Data Collection
•	 ‘Method’ refers to a data collection mode or method
•	 ‘Tool’ is an instrument used to carry out the method.
•	 Some important methods of data collection:
	 1.	 Observations
	 2.	 Experimentation
	 3.	 Simulation
	 4.	 Interviewing
	 5.	 Panel Method
	 6.	 Mail Survey
	 7.	 Projective Techniques
	 8.	 Sociometry

1.6.2	 Tools for Data Collection
•	 A number of different types of instruments or tools are used for data collection depending on the 

nature of the information to be gathered.

1.  Types of Tools 
✓	 Observation schedule
✓	 Interview guide and schedule
✓	 Questionnaires
✓	 Rating scale
✓	 Checklists
✓	 Data sheet
✓	 Institution’s schedule

2.  Constructing Schedule and Questionnaire 
✓	 Schedule and questionnaire are the most common tools of data collection. 
✓	 These tools have many similarities and contain a set of questions related to the problem under 

study. 
✓	 Both these tools aim at retrieving information from the respondents. 
✓	 The content, structure, question words, question order, etc. are the same for all respondents.
✓	 Each may use a different method; schedule is used for interviewing (the interviewer fills the 

schedule) and questionnaire is used for mailing (the respondents fill out questionnaires by 
themselves). 

✓	 Schedule and questionnaire are constructed almost in the same way. 
✓	 It consists of some main steps as below: 
	 (i)	 Identifying the research data
	 (ii)	 Prepare ‘dummy’ tables
	 (iii)	 Determine the level of the respondents
	 (iv)	 Decide methods of data collection
	 (v)	 Design instrument/tool
	 (vi)	 Assessment of the design instrument
	 (vii)	 Pre-testing
	 (viii)	 Specification of procedures
	 (ix)	 Planning format
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3.  Pilot Studies and Pre-Tests 
•	 It is often difficult to design a large study without adequate knowledge of the problem; population 

to cover, level of knowledge, and so on.
¤	 What are the issues and the concepts related to the problem under study?
¤	 What is the best method of study?
¤	 How long will it take and what is the cost?
¤	 These and other related questions require a lot of knowledge about the subject matter.

•	 To obtain such pre-knowledge, a preliminary or pilot study should be conducted.
•	 Pilot study is a full-fledged miniature study of a problem
•	 Pre-test is a trial test of a specific aspect of the study such as method of data collection or 

instrument.
•	 Instrument of data collection is designed with reference to the data requirements of the study.

¤	 It cannot be perfected purely on the basis of a critical scrutiny by the designer and other 
researchers. 

¤	 It should be empirically tested (should be tested using a collection of data). Hence, pre-testing 
of a draft instrument is rather indispensable.

•	 Pre-testing has several beneficial functions:
¤	 To test whether the instrument will get the responses needed to realize the objectives of the 

study.
¤	 To examine whether the content of the instrument is relevant and sufficient.
¤	 To test the questions whether the words are clear and in accordance with the understanding of 

the respondents.
¤	 To examine other qualitative aspects of the instrument such as the question structure and the 

sequence of questions.
¤	 To develop appropriate procedure to deal with the instrument in the field.

Teaching Notes

Reference to PowerPoint Slides
•	 Slide 2 – CHAPTER 1: INTRODUCTION TO STATISTICS
•	 Slide 3 – LEARNING OBJECTIVES
•	 Slide 4 – 1.1 WHAT IS STATISTICS?
•	 Slide 5 – 1.2 TYPES OF STATISTICS
•	 Slide 6 – 1.3 SOURCES OF DATA
•	 Slide 7 – Advantages of Primary Data
•	 Slide 8 – Disadvantages of Primary Data 
•	 Slide 9 – Advantages of Secondary Data
•	 Slide 10 – Disadvantages of Secondary Data
•	 Slide 11 – 1.4  TYPES OF DATA AND VARIABLES
•	 Slide 12 – 1.4  TYPES OF DATA AND VARIABLES (cont.)
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•	 Slide 13 – 1.5  LEVELS OF MEASUREMENT
•	 Slide 14 – 1.6  METHODS OF COLLECTING DATA
•	 Slide 15 – 1.6.1  Methods of Primary Data Collection
•	 Slide 16 – 1.6.2  Tools for Data Collection
•	 Slide 17 – 1.  Types of Tools
•	 Slide 18 – 2.  Constructing Schedule and Questionnaire
•	 Slide 19 – Main Steps to Construct Schedule and Questionnaire
•	 Slide 20 – Four Crucial Decision Areas
•	 Slide 21 – 3.  Pilot Studies and Pre-Tests
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CHAPTER

Concepts of 
Probability2

Learning Objectives
The study of this chapter should enable you to: 
❖	Define the meaning of probability and other key terms
❖	Understand the concepts of sample space and events
❖	Apply permutations and combinations rules to count sample points
❖	Calculate the probability of an event including conditional probability
❖	Define and apply additive rules, multiplicative rules, law of total probability and Bayes’ rule

Key Teaching Points
2.1	 INTRODUCTION
•	 Probability is a branch of mathematics that studies the possible outcomes of events with its 

possible likelihoods and relative distributions. 
•	 The word 'probability' refers to the chance that a particular event (or series of events) will occur 

on a linear scale from 0 (impossibility) to 1 (certainty), or as a percentage (0 to 100%).
•	 Frequentists (classic approaches) see probability as a measure of the frequency of an event.
•	 Bayesians (evidential probabilities) considers probability as an estimating parameter for a set of 

observed distributions.

2.2	 SAMPLE SPACE AND EVENTS
•	 A sample space is defined as a list of all possible outcomes of a random experiment or trial.
•	 An event is a set of outcomes or sample points.

2.2.1	 Sample Space
•	 The word experiment is used by Statistician to describe any process that generates a set of data.
•	  A simple example of a statistical experiment is the tossing of a coin several times.
•	  There are only two possible outcomes, ‘heads’ or ‘tails’ and we are particularly interested in the 

uncertain observations every time the coin is tossed.
•	 The set of all possible outcomes of a statistical experiment is called the sample space and is usually 

represented by the symbol S.
•	 Each outcome in a sample space is called an element or a member of the sample space, or simply 

known as a sample point.
•	 The sample space S, of possible outcomes when a coin is tossed, may be written as S = {H, T}, 

where H and T correspond to ‘heads’ and ‘tails’, respectively.
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2.2.2	 Tree Diagram
•	 In some experiments it is helpful to list the elements of the sample space systematically through a 

tree diagram.
•	 The term ‘tree diagram’ refers to a graphic organizer used to list all possibilities of a sequence of 

events in a systematic way.

2.2.3	 Events
•	 For any given experiment we may be interested in the occurrence of certain events rather than in 

the outcome of a specific element in the sample space.
•	 For instance, we may be interested in the event A, the outcome that is divisible by 3 when a dice is 

tossed.
¤	 This will occur if the outcome is an element of the subset A = {3, 6}.
¤	 To each event we assign a collection of sample points, which constitutes to a subset of the sample 

space.
¤	 Subset represents all of the elements for which the event is true while an event is a subset of a 

sample space.

2.3	 Counting Sample Points
•	 In many cases we shall be able to solve a probability problem by counting the number of sample 

points without actually listing each element.

2.3.1	 Multiplication Rule
•	 The fundamental principle of counting is often referred to as the multiplication rule.

	 Theorem 2.3.1 
	 If an operation can be performed in n1 ways, and if for each of these a second operation can be 

performed in n2 ways, then the two operations can be performed in n1n2 ways.

	 Theorem 2.3.2 
	 Suppose that an operation can be performed in n1 ways, and if for each one of these (from the first 

operation) a second operation can be performed in n2 ways, and then for each one of these (from 
the second operation) a third operation can be performed in n3 ways, and so on, then it can be 
shown that the sequence of k operations can be performed in n1n2, ..., nk ways.

2.3.2	 Permutations
•	 Frequently, we are interested in a sample space that contains elements with all possible orders or 

arrangements of a group of objects.
•	 The different arrangements are called permutations.
•	 Consider the letters a, b and c.

¤	 The six possible, distinct permutations are abc, acb, bac, bca, cab and cba.
¤	 Using Theorem 2.3.2, we could arrive at the answer 6 without actually listing the different 

orders.
¤	 n distinct objects can be arranged in n(n – 1)(n – 2)…(3)(2)(1) = n! ways.

	 Theorem 2.3.3 
	 The number of permutations of n distinct objects is n!. 
	 In general, n distinct objects taken r at a time can be arranged in 

	 n(n – 1)(n – 2)…(n – r + 1) ways = nPr = n!
(n – r)!

.
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	 Theorem 2.3.4 
	 The number of permutations of n distinct objects arranged in a circle is (n – 1)!. So far we have 

considered permutations of distinct objects. Obviously, if the letters b and c are both equal to x, 
then the 6 permutations of the letters a, b, c become axx, axx, xax, xax, xxa and xxa, of which only 
3 are distinct. Therefore, with 3 letters, 2 being the same, we have 3!/2! = 3 distinct permutations.

	 Theorem 2.3.5 
	 The number of different permutations of n objects of which n1 objects of type 1, n2 objects of 

	 type 2, ..., and nk objects of type k is n!
n1! n2!… nk!

.

	 Theorem 2.3.6 
	 The number of ways of partitioning a set of n objects into r cells with n1 elements in the first cell, 

n2 elements in the second, and so forth, is 

	 ( n
n1, n1,…,nr

) = n!
n1! n2!… nr!

, where n1 + n2 + … + nr = n.

2.3.3	 Combinations
•	 In many problems we are interested in,

¤	 The number of ways of selecting r objects from n without considering its order.
•	 These selections are called combinations.
•	 A combination is actually a partition with two cells,

¤	 The one cell containing the r objects selected
¤	 The other cell containing the (n - r) objects that are left

•	 The number of such combinations, denoted by,

	 ( n
r, n –r ), is shortened to, ( n

r )
	 since the number of elements in the second cell must be n – r.

	 Theorem 2.3.7 
	 The number of combinations of n distinct objects taken r at a time is

	 ( n
r ) =  n!

r1(n – r)
.

2.4	 CALCULATING THE PROBABILITY OF AN EVENT
•	 The probability of an event is calculated as

¤	 The ratio of the outcomes (sample points) of the event divided by the total number of possible 
outcomes (all points in the sample space).

2.4.1	 Probability of an Event
•	 In many experiments, such as tossing a coin or a dice, 

¤	 All the sample points have the same chance of occurring and are assigned equal probabilities.
¤	 For points outside the sample space, that is, for simple events that cannot possibly occur, we 

assign a probability of zero.
•	 To find the probability of an event A, we sum all the probabilities assigned to the sample points in 

A.
¤	 The sum is called the probability of A and is denoted P(A)
	 0 ≤ P(A) ≤ 1,
	 P(Ø) = 0 and P(S) = 1
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	 Theorem 2.4.1 
	 If an experiment can result in any one of N different equally likely outcomes, and if exactly n of 

these outcomes correspond to event A, then the probability of event A is: 
	 P(A) = n/N.

2.4.2	 Additives Rule
•	 Several important laws that frequently simplify the computation of probabilities are as follows. The 

first, called the additive rules, applies to unions of events.

	 Theorem 2.4.2 
	 If A and B are any two events, then 
		  P(A  B) = P(A) + P(B) – P(A  B).
	 If A and B are mutually exclusive, then 
		  P(A  B) = P(A) + P(B)
	 If A1, A2, A3, …, An are mutually exclusive, then 
		  P(A1  A2  …  An) = P(A1) + P(A2) + … + P(An).
	 If A1, A2, A3, …, An is a partition of a sample space S, then 
		  P(A1  A2  …  An) = P(A1) + P(A2) + … + P(An) = P(S) = 1.

	 Theorem 2.4.3 
	 For three events A, B and C, 
		  P(A  B  C) = P(A) + P(B) + P(C) – P(A  B) – P(A C) – P(B  C) + P(A  B  C).

	 Theorem 2.4.4 
	 If A and A are complementary events, then: 
		  P(A) + P(A) = 1.

2.4.3	 Conditional Probability
•	 The probability of an event B occurring when it is known that some event A has occurred is called 

a conditional probability and is denoted by P(B|A). 
•	 The conditional probability of B, given the occurrence of A, denoted by P(B|A), is defined by

	 P(B|A) = P(B  A)
P(A)

, if P(A) > 0.

Independent Events
•	 P(A|D) differs from P(A).
•	 This suggests that the occurrence of A influenced D.
•	 However, consider the situation where we have events A and B and P(A|B) = P(A); 

¤	 In other words the occurrence of B had no impact on the odds of occurrence of A. 
¤	 Here the occurrence of A is independent of the occurrence of B.

•	 Two events A and B are independent if and only if P(B|A) = P(B) and P(A|B) = P(A).
¤	 Otherwise, A and B are dependent.

2.4.4	 Multiplicative Rules
•	 Multiplicative rules apply to intersections of events.

	 Theorem 2.4.5 
	 If in an experiment the events A and B can both occur, then 
		  P(A  B) = P(B  A) = P(A)P(B|A) = P(B)P(A|B).
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	 Theorem 2.4.6 
	 Two events A and B are independent if and only if P(A  B) = P(A)P(B).

	 Theorem 2.4.7 
	 If, in an experiment, the events A1, A2, A3, …, Ak can occur, then 
		  P(A1  A2  …  Ak) 
		  = P(A1)P(A2|A1)P(A3|A1  A2)P(A4|A1  A2  A3)…. P(Ak |A1  A2  … Ak – 1).

	 If the events A1, A2, A3, …, Ak are independent, then 
		  P(A1  A2  …  Ak) = P(A1)P(A2)P(A3)P(A4)…. P(Ak).

2.4.5	 Law of Total Probability 
•	 Before we state and prove Bayes’ rule (Section 2.4.6), it is important to state the law of total 

probability.
•	 The law of total probability is useful in proving Bayes’ rule and in solving probability problems.
•	 In addition, this is a fundamental rule relating marginal probabilities to conditional probabilities.

	 Theorem 2.4.8 
	 According to the Law of total probability, if the events B1, B2, B3, …, Bk constitute a partition of the 

sample space S such that P(Bi) ≠ 0 for i = 1, 2, …, k, then for any event A,

		  P(A) = ∑ 
k
 

i=1
 P(Bi  A) =  ∑ 

k
 

i=1
 P(Bi)P(A|Bi).

2.4.6	 Bayes’ Rule 
•	 It is the result of probability theory.
•	 Relates the conditional and marginal probability distributions of random variables.
•	 Tells us how to revise beliefs in light of new evidence.
•	 The probability of occurrence of an event A conditional on the occurrence of another event B is 

different from the probability that B is conditional upon A
¤	 There is a definite relationship between these two, and Bayes’ rule is the statement of that 

relationship.

	 Theorem 2.4.9
	 According to the Bayes’ Rule, if the events B1, B2, B3, …, Bk constitute a partition of the sample 

space S, where P(Bi) ≠ 0 for i = 1, 2, …, k, then for any event A in S such that P(A) ≠ 0,

	 P(Bi |A) = 
P(Br  A)

∑ 
k
 

i=1
P(Bi  A)

 = P(Br)P(A|Br)

∑ 
k
 

i=1
P(Bi)P(A|Bi)

, for r = 1, 2, …, k

Teaching Notes
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CHAPTER Sampling Methods 
and Sampling 
Distribution3

Learning Objectives
The study of this chapter should enable you to:
❖	Distinguish various sampling methods (non-probability and probability)
❖	Define the bias in survey sampling
❖	Describe and apply the central limit theorem 
❖	Define the sampling distribution of a sample statistic

Key Teaching Points
3.1	 Introduction
•	 Sampling method refers to the way observations are selected from a population to be used as 

sample for a sample survey.
•	 Two types of sampling methods, 

¤	 Non-probability sampling—does not involve random selection
¤	 Probability sampling—involves random selection

•	 Probability sample 
¤	 A sample selected in such a way that each item or person in the population being studied has 

a known likelihood of being included in the sample.
•	 If probability sampling is done, 

¤	 Each item in the population has a chance of being chosen.
•	 If non-probability methods are used,

¤	 Not all items have a chance of being included in the sample.
¤	 Results may be biased (the sample results may not be representative of the population).

•	 The sampling distribution,
¤	 Of the sample used to construct confidence intervals for the mean and for significance testing 
¤	 With large samples leads to the central limit theorem (CLT).

✓	 CLT is one of the most remarkable results of the theory of probability as it justifies many 
procedures in applied statistics and quality control.

3.2	 Why Sample the Population?
•	 It is often not feasible to study the entire population.
•	 Major reasons why sampling is necessary are: 
	 1.	 The destructive nature of certain tests. 
	 2.	 The physical impossibility of checking all items in the population.
	 3.	 The cost of studying all the items in a population is often prohibitive.



2
Instructor’s Manual

	 4.	 The adequacy of sample results.
	 5.	 To contact the whole population would often be time-consuming.

3.3	 Sampling Methods: Non-Probability Sampling
•	 Non-probability sampling:

¤	 Does not use random selection
¤	 Does not rely on probability theory

•	 If a non-probability sample is used, 
¤	 May be unable to represent a population well
¤	 Often find it difficult to assess how well we have done the sampling

•	 there are situations where probability sampling methods are not feasible or practical to employ
¤	 Consider various alternatives of non-probability sampling
¤	 Two types:

➢	 Accidental
➢	 Purposive—approach the problem of sampling with a specific purpose which has been 

planned in advance

3.3.1	 Accidental, Haphazard or Convenience Sampling
•	 One of the most common methods of sampling goes under various titles.
•	 This includes the traditional ‘man on the street’ interviews conducted frequently by television 

news programs to get a quick reading of public opinion.
•	 The typical use of university students in much psychological research is primarily a matter of 

convenience. 
•	 In the simplest research practices, we often use the respondents that are easily accessible.
•	 In the context of a more in-depth research, we usually collect samples using volunteers which are 

easily available.
•	 It is clear that in all these types of sampling, we do not have strong evidence to reflect that the 

samples may represent the populations being studied and hence contributes to doubting the 
samples in most cases.

3.3.2	 Purposive Sampling
•	 Take samples with a purpose that had been specified in advance.
•	 Usually have set a specific group that to do the sampling.
•	 For example, you may have met with a group of interviewers who collect information by 

interviewing people passing by in front of them.
¤	 Most likely they’re doing a purposive sampling and that may also be a market research.
¤	 They might be looking for respondents in a certain age group by means of assessing people 

passing by who fall into the category they are looking for, and then do the interviews.
¤	 The first thing they would do is to ensure that the respondents meet the established criteria. 

•	 In situations where need to get samples quickly, and proportionality is not the main concern, 
purposive sampling methods can be very useful.

•	 Can easily obtain information from target population by using a purposive sample, but may also 
be biased towards certain groups of respondents because they are easily approachable.

•	 The methods listed below can be considered as subcategories of purposive sampling methods:
	 1.	 Modal Instance Sampling
	 2.	 Expert Sampling
	 3.	 Quota Sampling
	 4.	 Heterogeneity Sampling
	 5.	 Snowball Sampling
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•	 May do sampling for certain groups of people as in modal instance, expert or quota sampling.
•	 May also take samples for diversity as in heterogeneity sampling, or can take advantage of informal 

social groups to identify specific respondents who are hard to find as in snowball sampling.
•	 In these methods, we always know what we need—we perform sampling with a purpose.

3.4	 Sampling Methods: Probability Sampling
•	 Probability sampling or random sampling is a sampling technique in which the probability of 

getting any particular sample may be calculated.
•	 Any sampling method that utilizes some form of random selection is referred to as probability 

sampling.
•	 In establishing a method of random selection, we must establish some procedures to ensure that 

the different units in a population have equal probabilities to be selected.
•	 Various forms of random selection have been long practiced such as selecting numbers from a box 

in a lucky draw. 
•	 As of today, with advanced technology, we tend to use computers as a mechanism to generate 

random numbers as the basis of random selection. 
•	 For the various probability methods, here are some basic terms that must be defined: 
		  N = Number of cases in the sampling frame 
		  n = Number of cases in the sample 
		  NC

n 
= Number of combinations (subsets) of n from N 

		  f = n/N = Sampling fraction 
•	 It is always useful to remember that there is no one ‘best’ method of selecting a probability sample 

from a population of interest. 
•	 All probability sampling methods have a similar goal, and that is to allow chance to determine the 

items to be included in the sample.

3.4.1	 Simple Random Sampling
•	 A simple random sample is a sample formulated so that each item or person in the population has 

the same chance of being included. 
•	 Suppose a population consists of 1  000 clients and then a sample of 100 clients needs to be 

selected. 
•	 One way of ensuring that every employee has a chance of being chosen is to first write the name of 

each one on a small slip of paper and deposit all slips in a box.
•	 After they have been thoroughly mixed, the first selection is made. 
•	 This process is repeated until the sample of size 100 is chosen.
•	 A more convenient method of selecting a random sample is to use the identification number of 

each client and a table of random numbers, for example Table A1 in Appendix (two-digit random 
numbers). 

•	 For each number, the probability is the same and biased selection process can be eliminated.

3.4.2	 Systematic Random sampling
•	 In a systematic random sample, the items or individuals of the population are arranged in some 

way (alphabetically) or by some other methods. 
•	 A random starting point is selected, and then every kth member of the population is selected for 

the sample.
•	 The steps for a systematic random sample: 
	 (i)	 Number the units in the population from 1 to N
	 (ii)	 Decide on the n (sample size) that we want
	 (iii)	 k = N/n = the interval size
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	 (iv)	 Randomly select an integer between 1 to k
	 (v)	 Take every kth unit

3.4.3	 Stratified Random Sampling
•	 Stratified random sampling method:

¤	 Divides a population into several homogeneous subgroups (called strata)i.e. non-overlapping 
subgroups N1, N2, ... Ni, where N1 + N2 + ... + Ni= N

¤	 Takes a simple random sample from each subgroup (stratum) by a fraction off = n/N
¤	 Referred to as proportional or quota random sampling

•	 After the population has been divided into strata, either a proportional or non-proportional sample 
can be selected. 

•	 As the name implies, a proportional sampling procedure requires that the number of items in each 
stratum be in the same proportion as found in the population. 

•	 In a non-proportional stratified sample,
¤	 The number of items studied in each stratum is disproportionate to the respective numbers in 

the population
¤	 Then weight the sample results according to the stratum’s proportion of the total population. 

•	 Regardless of whether a proportional or non-proportional sampling procedure is used, every item 
or person in the population has a chance of being selected for the sample. 

•	 There are reasons why the stratified random sampling is usually preferred over simple random 
sampling. 
¤	 Firstly, this is the only effective method that ensures that the samples taken are not only 

representing the whole population but also the main subgroups, especially the minorities.
✓	 If the sizes of some subgroups are very small, can use different sampling fractions (f) in 

different strata.
¤	 The second advantage is the stratified random sampling generally has more statistical 

precisions compared to simple random sampling, and this would be true only if the strata are 
homogeneous.
✓	 The variability within groups is lower than the variability for the population

3.4.4	 Cluster (Area) random Sampling
•	 If we take a sample from a population that covers a wide geographic area using random sampling 

method, it is necessary to consider all parts of the area. 
•	 Cluster random sampling is often employed to reduce the cost of sampling a population scattered 

over a large geographic area. 
•	 Suppose we want to conduct a survey to determine the views of industrialists in a state with respect 

to environmental policies. 
¤	 Selecting a random sample of industrialists in the state and personally contacting each one 

would be time-consuming and expensive. 
¤	 Instead, we could employ cluster sampling by subdividing the state into small units, either 

districts or regions—often called primary units. 
¤	 Suppose we divided the state into 12 primary units, then selected at random four regions, 2, 7, 

4 and 12, and concentrated our efforts in these units. 
¤	 We could take a random sample of the industrialists in each of these regions and interview 

them.
•	 The steps in cluster sampling are as follows: 
	 (i)	 Divide population into clusters (usually along geographic boundaries) 
	 (ii)	 Randomly sample clusters 
	 (iii)	 Measure all units within sampled clusters
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3.4.5	 Multi-Stage Sampling
•	 An approach that combines or incorporates a number of different sampling methods is called 

multi-stage sampling.

3.5	Bi as in Survey Sampling
•	 The term ‘bias’ refers to the inclination of a sample statistic to be systematically different from a 

population parameter as a result of sampling procedure.

3.5.1	 Bias Due to Unrepresentative Samples
•	 A good sample should be representative of the entire population. 
•	 Each unit in the sample represents some of the elements of the population. 
•	 Bias occurs when the sample cannot represent the population well—referred to as selection bias.
•	 Examples of selection bias are as follows:
	 1.	 Undercoverage
	 2.	 Non-response Bias
	 3.	 Voluntary Response Bias

3.5.2	 Bias Due to Measurement Error
•	 In any survey, the lack of appropriate measurement processes can lead to biased findings. 
•	 A measurement process should take into account the environment in which the survey is being 

conducted, the structure of questions and type of respondents.
•	 Bias resulting from a measurement process is referred to as response bias. 
•	 The following describes some response bias:
	 1.	 Leading Questions
	 2.	 Social Desirability

3.5.3	 Sampling Error and Survey Bias
•	 A statistic calculated from a sample, called sample statistic, is used to estimate a population 

parameter. 
•	 The sample is generated from a survey and if we repeat this survey several times, we will have a 

number of different samples and hence a number of different estimates of a statistic for the same 
population parameter.

•	 The average of all estimates calculated from all samples would be equal to the actual population 
parameter if the sample statistic is unbiased.

•	 This is true even though each of these estimates may differ from the population parameter and the 
variability among these estimates is called the sampling error.

•	 Sampling error can be reduced by increasing the sample size, i.e. a large sample size would reduce 
the variability of the sample statistic. 

•	 However, survey bias cannot be reduced or eliminated by increasing the sample size. 
•	 Survey bias is actually caused by the problems in sampling methodology (undercoverage, non-

response bias, etc.) and this should be corrected first rather than the sample size. 
•	 Large sample size cannot fix the problems in the methodology that lead to survey bias.

3.6	T he Central Limit Theorem
•	 All tests of means are based on the Central Limit Theorem (CLT). 
•	 This theorem provides a simple procedure to determine the mean, variance and shape of a distri

bution of sample means. 
•	 All tests of hypotheses related to the means require the use of distributions of sample means. 
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•	 Therefore, the CLT should be clearly understood before the testing of hypotheses with means. The 
theorem could be expressed as follows: 

	 ‘When an infinite number of random samples is taken consecutively from a population, the 
distribution of the sample means calculated from each sample will be approximately normally 
distributed with mean, µ and standard deviation, σ/√ N (~ N(µ, σ/√ N )) as the sample size, N 
becomes larger regardless of the shape of distribution of the population.’ 

•	 The Central Limit Theorem consists of three main components—successive sampling from a 
population, increasing sample size and distribution of a population.

•	 Please note that this theory can only be employed for mean and no other statistics.

3.6.1	 Successive Sampling
•	 To illustrate the successive sampling, we may use samples that successively drew from a uniform 

distribution.

3.6.2	 Increasing Sample Size
•	 The second component of the CLT is the sample size. 
•	 Generally, the sampling distribution of the mean becomes more normally distributed as sample 

size increases.

3.6.3	 Population Distributions
•	 First, get samples from a population of a uniform distribution, then, calculate the mean for each 

sample and plot the values of the sample means. 
•	 Although the actual distribution is completely flat, if we take an infinite number of successive 

random  samples from the population, the distribution of the sample means becomes 
approximately normally distributed with mean µ and standard deviation σ/√ N  (~ N (µ, σ/√ N )) 
as the sample size increases. 

•	 This component of the central limit theorem means that the sampling distribution of the mean 
will be approximately normally distributed no matter what the actual shape of the population 
distribution.

•	 For instance, a Poisson distribution is often found when studying rare events where the shape of 
the distribution is positively skewed (skewed to the right). 

•	 A normal distribution on the other hand reflects a variety of physical and psychological attributes, 
and the shape of the distribution is unimodal, symmetric and bell-shaped.

3.7	 Sampling Distribution
•	 The probability distribution of a statistic is called a sampling distribution. 
•	 The probability distribution of X– is called the sampling distribution of the mean. 
•	 The sampling distribution of a statistic depends on the size of the population, the size of the samples 

and the method of choosing the samples.
•	 One should view the sampling distribution of X– as the mechanism from which we will eventually 

use to make inferences on the parameter, µ. 
•	 The sampling distribution of X– with sample size, n is the distribution that results when an 

experiment is conducted over and over (always with sample size n) and produces many values of  
X– result. 

•	 This sampling distribution, then, describes the variability of sample averages, x– around the 
population mean, µ.
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3.7.1	 The Sampling distribution of the Sample Mean
Theorem 3.7.1 
The sampling distribution of X– is the distribution of values of the sample mean over all possible 
samples of the same size from the same population. 

From each sampling, we calculate and record the value of the sample mean, X–. Now we have an 
infinite number of X–’s, and then we calculate the mean and standard deviation of all X–’s. Next, we 
draw a histogram to check the shape of the distribution and it has already been made clear that we 
can use the three most important characteristics (mean, standard deviation and shape) to describe 
the sampling distribution of X–.

In practice, nobody is able or willing to take an infinite number of samples. Even so, the results 
can be obtained through the application of probability theory. For the sample mean, in general, the 
following results have been derived by theoretical statisticians.

Theorem 3.7.2 
The Mean and Standard Deviation of X–: 
		  For a random sample of size, n taken from a population with mean, µ and standard deviation,σ; 

the  sample mean (X–), from an infinite size of population, will have a mean and a standard 

		  deviation of µ and σ/√n , respectively, or a standard deviation of √ N – n
N – 1

. 

√n
 if the population 

size is finite (size N).

Theorem 3.7.3 
The Shape of the Distribution of X–: 
		  The sample mean X– will have a normal distribution regardless of n if the population is normal. 

However, if not normal but the sample size n is large, X– will have an approximately normal 
distribution. 

Note: 
	 1	 The mean of X–, denoted by E(X–) or µX

–, is known as the Expected Value of X–. The standard 
deviation of X–, denoted by X

–, is known as the standard error (SE). 
	 2	 As the sample size n approaches infinity, the distribution of X– approaches normality. In practice, 

as agreed by most statisticians, the normal approximation is acceptable if n = 30. 
	 3	 From Theorem 3.7.2, the two expressions for the standard deviation of the sample mean X– differ

		  only by a factor √ N – n
N – 1  (N is the population size and n is the sample size). This is called the 

		  Finite Population Correction Factor (FPCF) and this factor is close to 1 if N is much larger than n, 
and hence it can be ignored. In practice, the FPCF can be ignored if n is less than 5% of N. 

	 4	 Population standard deviation, σ is often not known. If n is ‘large’, we can replace it with the 
sample standard deviation, s. Then the standard error (SE) can be estimated by s/√n  or  
((s/√n )(√N– n )/(N – 1))

		  With the knowledge of the sampling distribution of the sample mean, X– we can now determine 
the probabilities of its possible values.

3.7.2	 The Sampling distribution of the Sample Proportion
•	 There are also other sample statistics that have the sampling distributions such as median, standard 

deviation and proportion. 
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Theorem 3.7.4 
The Central Limit Theorem for the Sample Proportion, p–: 
		  A random sample of size n from a population with a sample proportion, p– will have  sample mean, 

E( p–) = p and sample standard deviation, p– = √ p(1 – p)/n  if the size of the  population is infinite, 
or with standard deviation,  p– = √ (N – n)/(N – 1)  √ p(1 – p)/n  if the size of the population is 
finite (N). If n is reasonably large, the sample proportion,  p– will have an approximately normal 
distribution.

		  This is an estimate or approximate distribution—as the sample size, n increases, and the accuracy 
of the estimation or approximation will also increase. In practice, determining how large the 
value of n to be acceptable for the approximation is different from what we used for the sampling 
distribution of the sample mean (n ≥ 30). The value of n is considered to be large enough if both 
np and n(1 – p) are greater than or equal to 5. 

		  From Theorem 3.7.4, the two expressions for the standard deviation of the sample proportion,  
p– differ only by the FPCF,  √ (N – n)/(N – 1)  (same as for the sample mean X–). 

		  However, as before, this FPCF can be ignored if n is less than 5% of N.
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CHAPTER Random Variables 
and Probability 
Distribution4

Learning Objectives: 
The study of this chapter should enable you to: 
❖	Define a random variable and a probability distribution 
❖	Calculate the expected value of a random variable (discrete and continuous) 
❖	Identify some specific probability distributions 
❖	Calculate probabilities using normal approximation

Key Teaching Points
4.1	 Introduction
•	 In an experiment, the outcomes are not necessarily in the form of numbers. 
•	 For example, a coin is tossed and the outcome is either a ‘head’ or a ‘tail’. 
•	 For any experiment, a random variable is used to represent every outcome with a unique 

numerical value. 
•	 As the experiment is repeated, the value of a random variable will vary from trial to trial. 
•	 A probability distribution identifies:

¤	 The probability of each unique value of a random variable (discrete variable)
¤	 The probability of a value in a particular interval (continuous variable)

•	 It reflects the range of all possible values that a random variable can achieve and the probability 
that a value of a random variable is in any measurable subset from that range. 

•	 The concept of probability distribution and random variables underlies the mathematical 
discipline of probability theory and the science of statistics. 

•	 There is variability in almost any value that can be measured from a population (e.g. weight, 
strength, growth, sales, etc.). 

•	 Almost all measurements have some intrinsic error. 
•	 For these and many other reasons, simple numbers are often inadequate for describing a quantity, 

while probability distributions are often more appropriate.

4.2	N umerical Events and Random Variables
•	 For a scientist, engineer, or businessman, the events of main interest are those represented by 

numbers, referred to as numerical events. 
•	 Since the value of a numerical event will vary from trial to trial (repeated sampling), it is referred 

to as a random variable. 
•	 For each point in the sample space S, a real number will be assigned to denote the value of a 

numerical event. 
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•	 For some points, the same number may be assigned. 
•	 However, the numbers will vary from one point to another. 
•	 Therefore, a random variable that is a function of the sample points in the sample space has to be 

defined. If we let Y denote this variable, then Y = a, is the numerical event that contains all sample 
points assigned as ‘a’. 

•	 The sample space S can be partitioned into a number of mutually exclusive subsets in such a way 
that a subset consists of only the points that are assigned the same value of Y. 

•	 Therefore, a random variable can be defined as ‘a real-valued function defined over a sample 
space’.

4.3	T he Expected Value of a Random Variable
•	 The expected value of a random variable, also known as its mean value, is the weighted average of 

all the values that a random variable can take.

4.3.1	 The Expected Value for a Discrete Random Variable
•	 ‘Discrete’ refers to countable numbers—integers or whole numbers. 
•	 Therefore, a discrete random variable is one that can only assume the values 0, 1, 2, 3, 4, 5, 6, etc. 
•	 The expected value of a discrete random variable is defined as the weighted average of all its possible 

values where the weights are the respective probabilities of the variable. 
•	 Let Y be a discrete random variable with probability function p(y). Then the expected value of Y, 

E(Y), is defined to be:

		  E(Y) = ∑ 
y

 y․p(y).

	 If p(y) is an accurate characterization of the population frequency distribution, then E(Y) = µ, the 
population mean.

	 Theorem 4.3.1
	 Let c be a constant, then, 
		  E(c) = c.

	 Theorem 4.3.2
	 Let g(Y) be a function of the random variable Y and let c be a constant. Then
		  E [cg(Y)] = cE[g(Y)].

	 Theorem 4.3.3
	 Let g1(Y), g2(Y), …,gk(Y) be k functions of the random variable Y. Then
		  E [g1(Y) + g2(Y) + … + gk(Y)] = E [g1(Y)] + E [g2(Y)] + … + E [gk(Y)].

	 Theorem 4.3.4
	 The variance of a random variable Y can be determined by,
		  V(Y) = σ2 = E[(Y – µ)2] = E(Y2) – µ2.

4.3.2	 The Expected Value for a Continuous Random Variable
•	 A continuous random variable is one which takes an infinite number of possible values (real 

values). 
•	 Hence, the expected value of a continuous random variable is the probability density-weighted 

integral of all possible values.
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•	 The expected value of a continuous random variable Y is,

	 E(Y) = ∫
∞

–∞
y․f(y)dy.

	 provided the integral exists.

	 Theorem 4.3.5
	 Let g(Y) be a function of Y. Then, the expected value of g(Y) is: 

	 E[g(y)] = ∫
∞

–∞
g(y)f(y)dy;

	 provided the integral exists.

	 Theorem 4.3.6
	 Let c be a constant and let f(Y), f1(Y), f2(Y), …,fk(Y) be the functions of a continuous random 

variable Y. Then the important results can be listed as follows:
	 1.	 Expected value of a constant; E(c) = c
	 2.	 E [c․f(Y)] = c․E[f(Y)]
	 3.	 E [f1(Y) + f2(Y) + … + fk(Y)] = E[f1(Y)] + E[f2(Y)] + … + E[fk(Y)]
	 4.	 V(Y) = σ2 = E[(Y – µ)2] = E(Y2) – µ2

4.4	S pecific Probability distributions
•	 Some experimental situations naturally give rise to specific probability distributions. 
•	 In most cases, the distributions used are simply models of the observed phenomena.
•	 There are three important and widely used probability distributions such as binomial, Poisson and 

normal.

4.4.1	 The Binomial Distribution
•	 In an experiment of repeated trials, each trial has two possible outcomes; success or failure. 
•	 An example of the most obvious application is on a production line, where each item produced 

would be defective or non-defective. 
•	 The trials are independent and the probability of a success remains the same from trial to trial. 
•	 This type of process is called the Bernoulli process and each trial is called a Bernoulli trial.

1  Binomial Probability Distribution
•	 Each Bernoulli trial produces a success with probability p and a failure with probability q = 1 – p. 

Thus, the probability distribution of a binomial random variable X, representing the number of 
successes in n independent trials, may be written as:

	 P(X = x) = b(x; n, p) = ( n
x )pxqn–x, x = 0, 1, 2, …,n successes

2  Mean and Variance of Binomial
•	 By simply using the parameters p and n, the mean and variance of a binomial random variable X 

can be determined as follows:
µ = E(X) = np

2 = V(X) = np(1 – p).

4.4.2	 The Poisson Distribution
•	 A second important discrete distribution is the Poisson distribution. 
•	 While a binomial random variable counts the number of successes that occur in a fixed number 

of trials, a Poisson random variable counts the number of rare events (successes) that occur in a 
specified time interval or a specified region. 
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1  The Poisson Process
•	 A Poisson process possesses the following properties:
(a) 	For any interval, the number of successes does not depend on the number of successes in other 

intervals.
(b) 	The probability of a success in one interval is directly proportional to the size of the interval, and 

is the same for all intervals with the same size.
(c) 	As an interval becomes smaller, the probability of two or more successes in the interval will 

approach to zero.
•	 The Poisson model thus is applicable when the events of interest occur randomly, 

independently of one another and rarely. 

2  Poisson Probability Distribution
•	 The Poisson random variable indicates the number of successes that occur during a given time 

interval or in specified region in a Poisson experiment.

•	 If X is a Poisson random variable, the probability distribution of X is given by

		  P(X = x) = p(x; µ) = e–µ µx

X!
, x = 0, 1, 2, …	 (4.4.8)

	 where µ is the average number of successes occurring in the given time interval or region and e = 
2.71828… is the base of the natural logarithms.

•	 Notice that, since µ (the average number of successes occurring in a specified interval) appears in 
the formula, we must obtain an estimate of µ (usually from historical data) before we can apply the 
Poisson distribution. 

•	 The number of values of a Poisson random variable is infinite (no limit). 
•	 Unlike the Binomial random variable, the Poisson random variable is discrete with infinitely many 

values.

3  Mean and Variance of Poisson
•	 If X is a Poisson random variable for which µ is the average number of successes that occur in a 

specified interval, the expected value (mean) and the variance of X have the same value.

E(X) = V(X) = µ.

4  Poisson Approximation to Binomial Distribution
•	 Although Binomial and Poisson random variables have distinct distributions, the two distributions 

are related. 
•	 If we imagine a Poisson random variable whose interval has been subdivided into n (where n 

is large) very small subintervals, the probability of a success in any subinterval is approximately 
p = µ/n, and so we have an approximate Binomial random variable. 

•	 Similarly, a Binomial distribution for which the number of trials n is large and the probability p of 
a success is very small can be approximated by a Poisson distribution. 

•	 This approximation is useful because for large values of n, Binomial probability tables are often 
unavailable.

•	 The appropriate Poisson distribution that will be used for the approximation will have µ = np, the 
mean for the Binomial distribution. In order for the approximation to be good one, p should be 
very small. 

•	 Thus, it is conventional to suggest that at the least, we should have p < 0.05.
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5  Comparison of Binomial and Poisson Probabilities
•	 If we compare the binomial and Poisson probabilities with mean µ = 1, as shown in the table below, 

the values ​​are not much different. 

•	 Binomial and Poisson probabilities with mean µ = 1.

x Binomial probability
(n = 50, p = 0.02)

Poisson probability
(µ = np = 1)

0
1
2
3
4
5
6

0.364
0.372
0.186
0.061
0.014
0.003
0.000

0.368
0.368
0.184
0.061
0.015
0.003
0.001

4.4.3	 The Normal Distribution
•	 The normal distribution is symmetrical and bell-shaped curve. 
•	 It is the most important continuous distribution.
•	 The normal distribution is important because of two reasons. 

¤	 First, the normal distribution is considered to be the basis distribution of statistical inference, 
representing the distribution of possible estimates (from different samples) of a population 
parameter. 

¤	 Second, the normal distribution gives a useful approximation for other distributions including 
discrete distributions such as Binomial.

1  Normal Probability Distribution
•	 A random variable X with mean, µ and variance, σ2 is normally distributed if its probability density 

function is given by:
		  N(x; µ, ) = f(x) = ( 1

√ 2π )e–(1/2)[ x – µ
 ]2

, – ∞ < x < ∞,

	 where π = 3.14159… and e = 2.71828… 

•	 A random variable that is normally distributed is called a normal random variable and can take on 
any real value from -∞ to +∞.

•	 The normal probability density function f(x) is also continuous and has a positive value for all 
values of x. 

•	 However, the value of f(x) does not represent the probability that the variable X is equal to x, 
instead it is an expression of the height of the curve at X = x. 

•	 In addition, the total area under the curve f(x) must equal to 1.
•	 It is clear that from the formula for the probability density function, a normal distribution is fully 

determined by the two parameters, µ and σ2. 
•	 That is, a whole family of different normal distributions exists, but one differs from another only in 

the location of its mean µ and in the variance σ2 of its values, but the fact remains that all normal 
distributions have the same symmetrical and bell-shaped appearance. 

2  Standard Normal Distribution
•	 After we determine that a situation can be modeled appropriately by using a normal distribution. 
•	 The procedure for finding normal probabilities becomes crucial.



6
Instructor’s Manual

•	 The actual calculation of such an area (probability) is difficult, and so we can resort to the tabulated 
area provided by the Standard Normal Probability Table; given in the Appendix section (Table 
A4).

•	 Because each pair values for the parameter µ and σ2 gives rise to a different normal distribution, 
there are infinitely many possible normal distributions, making it impossible to provide a table of 
areas for each one. 

•	 Nevertheless, we can make do with just one table.
•	 The particular normal distribution for which Standard Normal Probability Table (Table A4) has 

been constructed is the normal distribution with µ = 0 and σ = 1, called the standard normal 
distribution; N(z; 0,1). 

•	 The corresponding normal random variable, with a mean of 0 and a standard deviation of 1, is 
called the standard normal random variable and is denoted as Z.

•	 Thus, before using Standard Normal Probability Table, we must convert or transform our normal 
random variable, X into the standard normal variable, Z.

•	 Standard Normal Random Variable, Z = 
X – µx

x
.

•	 The z-value corresponding to a given value x0 has an important interpretation because (x0 – µ) 
expresses how far x0 is from the mean while the corresponding z-value, z0 = (x0 – µ)/ tells us how 
many standard deviations, x0 is from the mean.

•	 As we have just seen, we can obtain the desired probabilities for any normal distribution from 
probabilities tabulated for the standard normal distribution.

3  Normal Approximation to Binomial
•	 To approximate other probability distributions including the Binomial, the normal distribution 

can be used. 
•	 For a Binomial distribution with a large number of trials (n > 25), the Binomial tables (Table A2) 

cannot be employed, instead the normal approximation to the Binomial becomes useful. 
•	 Since the normal distribution is symmetrical, it would provide the best approximation when the 

Binomial is also symmetrical. 
•	 Also, a Binomial distribution is symmetrical when p (the probability of a success) is equal to 0.5; 

hence the best approximation is when p is close to 0.5. 
•	 The greater the difference between p and 0.5, the larger the number of trials n is needed for a good 

approximation.
•	 The normal approximation to the binomial distribution works best when only a very small 

probability exists, which results to the approximating normal random variable to assume a value 
that falls outside the binomial range (0 ≤ X ≤ n). 

•	 Generally, this is satisfied if np ≥ 5 and n(1 - p) ≥ 5, so a conventional rule of thumb is that the 
normal distribution will provide an adequate approximation of a binomial distribution if np ≥ 5 
and n(1 – p) ≥ 5. 

•	 Recall that the Poisson distribution can be used to approximate binomial probabilities if p is small, 
say p < 0.05.

•	 Given a binomial distribution with n trials and probability p of a success on any trial, the mean and 
variance of the binomial distribution are:

	 µ = np
	 2 = np(1 – p)
•	 We therefore choose the normal distribution with µ = np and 2 = np(1 – p) to be the approximating 

Binomial distribution.
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CHAPTER Descriptive Statistics: 
Describing, Exploring 
and Comparing Data5

Learning Objectives
The study of this chapter should enable you to:
❖	Organize raw data into a frequency distribution
❖	Present a frequency distribution into graphic forms
❖	Describe and calculate different measures of central tendency
❖	Define and calculate different measures of dispersion and skewness 

Key Teaching Points
5.1	 Introduction
•	 Descriptive statistics aims to summarize quantitative data without using the probabilistic 

formulation and not to draw conclusions about the population. 
•	 Although a data analysis uses inferential statistics to deduce the main conclusions, the features of 

descriptive statistics are usually highlighted at the same time. 
•	 The computer has become an important tool in the presentation and analysis of data. Among the 

most popular and widely used are SAS, SPSS, Statgraphics and Minitab.
•	 The collected samples are referred to as raw data. This chapter discusses how to organize raw data 

into a frequency distribution and present it using graphic forms. 
•	 The data are further explored using measures of central tendency and then compared using 

measures of dispersion and skewness.

5.2	 Frequency Distribution  
•	 A frequency distribution is a tabulation of values that contains one or more variables. 
•	 It summarizes the distribution of values in the sample where each entry represents the frequency 

or count of the occurrences of values within a particular interval.
•	 It is much simpler to manage the frequency tabulated data than the raw data. With frequency 

tables, there are simple formulas to calculate the important statistics.

5.2.1	 Frequency Distribution for Qualitative Data 
•	 A frequency distribution exhibits how the frequencies are distributed over categories. 
•	 A frequency distribution for qualitative data lists all categories and the number of elements that 

belong to each of the categories.
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5.2.2	 Frequency Distribution for Quantitative Data
•	 A frequency distribution for quantitative data lists all the classes and the number of values that 

belong to each class. Data presented in this form is called grouped data. 
•	 An interval that includes all the values that fall within two numbers, the lower and upper limits, is 

called a class. The classes are non-overlapping.

5.2.3	 Class Intervals and Midpoints (Quantitative Data)
•	 The midpoint, or class mark, is determined by going halfway between the lower and the upper class 

limits. It can be computed by adding these two limits and dividing the total by 2. 
•	 The class interval for a frequency distribution can be determined by subtracting the lower limit of 

a class from the lower limit of the next higher class.

5.2.4	 Suggestions on Constructing a Frequency Distribution (Quantitative Data)
•	 Use equal-size class intervals.
•	 Find the suggested class interval:

¤	 Suggested class interval = Highest value – Lowest value
Number of classes

¤	 Suggested class interval = Highest value – Lowest value
1 + 3.322 (logarithm of total freq.)

•	 Choose appropriate number of classes.  
¤	 No fewer than 5 or more than 15 classes
¤	 Use the smallest integer k such that 2k ≤ n; n is the no. of observations. 

5.2.5	 Relative Frequency Distribution
•	 It may be desirable to convert class frequencies to relative class frequencies to show the percentage 

of the total number of observations in each class.
•	 Each of the class frequencies is divided by the total number of frequencies.

5.2.6	 Cumulative Frequency Distribution
•	 The cumulative frequency for each class is determined by summing the frequencies for the class 

and all prior classes.

5.3	 Graphic Representation of a Frequency Distribution
•	 Most publications emphasize the importance of graphs or charts as they give the readers a quick 

view of the important facets of the statistical data.
•	 We will concentrate on four graphic forms: a stem-and-leaf display, a histogram, a frequency polygon 

and a cumulative frequency polygon (ogive).

5.3.1	 Stem-and-Leaf Display
•	 The stem-and-leaf display technique is commonly used as it offsets the loss of information that 

occurs from summarizing raw data. 
•	 Each value is divided into two portions; the stem is the leading digit and the leaf is the trailing 

digit. Stem is placed to the left of a vertical line and leaf is to the right. 
•	 An advantage of a stem-and-leaf display over a frequency distribution is that we do not lose 

information on individual observations. 
•	 A stem-and-leaf display is constructed only for quantitative data. 
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5.3.2	 Histogram
•	 One of the most widely used charts and one of the easiest to understand.
•	 It describes a frequency distribution in terms of a series of adjacent bars, each used to represent the 

number of class frequencies in a particular class.
•	 The class frequencies are scaled on the vertical axis and either the class limits or midpoints are 

scaled on the horizontal axis. 
•	 A bar is drawn for each class so that its height represents the frequency of that class. 

5.3.3	 The Frequency Polygon
•	 A frequency polygon is a graph formed by joining the midpoints of the tops of successive bars in 

histogram with straight lines. 
•	 It consists of line segments connecting the points formed by the intersection of the class midpoints 

(X-axis) and the class frequency (Y-axis). 

5.3.4	 Cumulative Frequency Polygon (Ogive)
•	 It is sometime useful to determine the number of observations that fall above or below a certain 

value. 
•	 This can be accomplished using the cumulative frequency polygon or curve, which is also known as 

ogive. 
•	 Less-than ogive allows us to determine how many (or percentage) of the observations are equal to 

or less than a certain value.
•	 More-than ogive allows us to determine how many (or percentage) of the observations are equal to 

or more than a selected amount.

5.3.5	 Other Graphic Representations of Data
•	 Line chart  

¤	 Line chart is ideal for portraying the trend of data over a period of time. 
¤	 It is constructed by connecting a series of data using straight line segments. 

•	 Bar chart 
¤	 A graph made of bars with heights that represent the frequencies of respective categories; 

horizontal bar chart, vertical bar chart and two-directional bar chart. 
¤	 A bar chart can be used to depict any of the levels of measurement.

•	 Pie chart 
¤	 A circle divided into portions that represent the relative frequencies or percentages of a 

population or a sample belonging to different categories.
¤	 To construct a pie chart, we multiply 360 by the relative frequency for each category to obtain 

the size of the angle for the corresponding category. 
¤	 A pie chart is useful for depicting a relative frequency distribution. 

5.4	 Measures of Central Tendency
•	 A measure of central tendency is a single value that represents a set of data. 
•	 It pinpoints the centre of the values and is commonly referred as an average. 
•	 We will consider four measures of central tendency; arithmetic mean, median, mode and geometric 

mean. 
•	 Any measurable characteristic of a population, such as the mean, is called a parameter; any 

measurable characteristic of a sample is called a statistic.

5.4.1	 The Arithmetic Mean
•	 The arithmetic mean is a widely used measure of central tendency.
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•	 Properties of Mean:
¤	 Every set of interval-level and ratio-level data has a mean.
¤	 All the values are included in computing the mean.
¤	 A set of data has only one mean (unique).
¤	 The mean is a useful measure for comparing two or more populations.
¤	 The arithmetic mean is the only measure of central tendency where the sum of the deviations of 

each value from the mean will always be zero. 
•	 Mean for Ungrouped Data:

		  x– = ∑ 
n
 

i=1
xi/n

¤	 The mean of a sample, or any measure based on sample, is called a statistic.
•	 Mean for Grouped Data (Weighted Mean):

¤	 The mean of a sample organized in a frequency distribution is computed by:

		  x– = ∑ 
k
 

i=1
fixi/n

5.4.2	 The Median
•	 For data containing one or two very large or very small values, the centre point can be better 

described using median. 
•	 Properties of the Median: 

¤	 Unique — there is only one median for a set of data.
¤	 It is determined by arranging the data from low to high, and find the middle value.
¤	 It is not affected by extremely large or small values.
¤	 It can be computed for an open-ended frequency distribution if the median does not lie in the 

open-ended class.
¤	 It can be computed for ratio-level, interval-level and ordinal-level data.

•	 Median for Ungrouped Data: 
¤	 The median for ungrouped data is the midpoint of values after they have been arranged from the 

smallest to the largest, or the largest to the smallest. 
¤	 There are as many values above the median as below it in the data array.

¤	 Median	 =	 	
Middle value, if n is odd;

			   	Mean of the two middle values, if n is even.
•	 Median for Grouped Data: 

¤	 The median for the grouped data can be estimated by locating its class and then interpolating 
within that class to arrive at the median. 

	 Median = x– = Lm + ( N
2

 – ∑ fm – 1

fm )Cm

5.4.3	 The Mode
•	 The mode of a set of measurements is the value that occurs most frequently.
•	 It is useful in describing nominal and ordinal levels of measurement. 
•	 Mode for Ungrouped Data:

¤	 The mode has the advantage of not being affected by extreme values. 
¤	 It can be used as a measure of central tendency for open-ended distributions. 
¤	 Many data sets have no modes because no value appears more than once. 
¤	 Some data sets have more than one mode; a data set with two modes is referred to as bimodal.
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•	 Mode for Grouped Data:
¤	 The mode can be approximated by the midpoint of the class with the largest class frequency.

¤	 Mode = x̂ = Lmode + [ ∆1
∆1 + ∆2

]Cmode

5.4.4	 The Geometric Mean
•	 The geometric mean is not so highly influenced by extreme values as is the arithmetic mean. It has 

two main uses: 
¤	 To average percentages, indexes and relatives.
¤	 To determine the average percent increase in sales, etc.

•	 The geometric mean of a set of n positive numbers is defined as the nth root of the product of the 
n numbers. If one of the numbers is non-positive, the G.M. cannot be computed.
¤	 Geometric Mean = G.M. = n√(X1)(X2) … (Xn)

5.4.5	 Selecting an Average for Data in a Frequency Distribution
•	 For a symmetric distribution, the three averages (mean, median and mode) are located at the centre 

and are always equal.
•	 As the distribution becomes asymmetrical, or skewed, the relationship among the three averages 

changes. 
•	 In a positively skewed, the mean is the largest of the three averages. The median is generally the next 

largest average and the mode is the smallest. 
•	 In a negatively skewed, the mean is the lowest of the three averages. The median is greater than the 

mean and the modal value is the largest. 
•	 If the distribution were highly skewed, the mean would not be a good average.
•	 An approximate relationship among the three averages: 

¤	 If there is sufficiently large number of observations to suggest a smooth distribution and if 
the shape of the curve is only moderately skewed, the median is approximately one third of the 
distance from the mean to the mode.

¤	 If two averages of a moderately skewed frequency distribution are known, the third can be 
approximated.
Mode = Mean – 3(Mean-Median)
Mean = [3(Median) – Mode] / 2
Median = [2(Mean) + Mode] / 3.

5.5	 Measures of Dispersion and Skewness
•	 Several measures that describe the dispersion, variability, or spread of the data; range, mean 

deviation, variance, quartiles and percentiles.
•	 Skewness is a measure of the asymmetry of the probability distribution of a random variable. 

Skewness value can be positive, negative or undefined.

5.5.1	 Why Study Dispersion?
•	 A small value for a measure of dispersion (spread) indicates that the data are clustered closely 

around the mean. The mean is therefore considered quite representative of the data (a reliable 
average). 

•	 A large value for a measure of dispersion indicates that the mean is not very reliable. 

5.5.2	 Measures of Dispersion—Ungrouped Data
•	 The Range:

¤	 Range is the simplest measure of dispersion. 
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¤	 It is the difference between the highest and lowest values in a set of data.
¤	 Range = Highest value – Lowest value. 

•	 Mean Deviation: 
¤	 A serious defect of the range is that it is based only on two values. 
¤	 The mean deviation measures the mean amount by which the values in a population, or sample, 

vary from their mean (mean absolute differences). 

¤	 Mean Deviation = M.D. = ∑ 
n
 

i=1
|X1 – X

–
|

n
 .

•	 Variance and Standard Deviation: 
¤	 Variance and standard deviation are also based on the deviations from the mean. 
¤	 Variance is the arithmetic mean of the squared deviations from the mean while standard 

deviation is the positive square root of the variance.

¤	 The sample variance for ungrouped data: s2 = 
∑ 
n
 

i=1
(Xi –  X

–
)2

n – 1
 = 

∑ 
n
 

i=1
 Xi 

2 – [∑ 
n
 

i=1
Xi]2

n
n – 1

.

5.5.3	 Measures of Dispersion—Grouped Data
•	 Range for Grouped Data:

¤	 Range = Highest limit of the largest class - Lowest limit of the smallest class.	
•	 Mean Deviation for Grouped Data: 

¤	 Mean Deviation = M.D. = 1
n

 (∑ k i=1
|x1 – x–| fi)

•	 Standard Deviation for Grouped Data:

¤	 s = √ 1
n – 1  (∑ k i=1

fi(xi – x–)2)  = √ 1
n – 1  (∑ k i=1

fix
2
i – 1

n
 (∑ k i=1

fixi)2) .

5.5.4	 Interpretation and Uses of the Standard Deviation
•	 The standard deviation is commonly used as a measure to compare the spread in two or more sets 

of observations. 
•	 A large value of standard deviation indicates that the values ​​of the data are widely dispersed from 

the mean. 
•	 Conversely, for a small value of standard deviation, the values are spread close to the mean. This is 

clearly stated by Chebyshev’s theorem and the empirical rule.
•	 Chebyshev’s theorem:

¤	 For a set of values, regardless of the shape of the distribution, the proportion of the values 
within k standard deviations of the mean is at least 1-1/k2, k>1. 

•	 The Empirical Rule: For a set of values with symmetrical and bell-shaped frequency distribution, 
the following can be concluded:
¤	 Approximately 68% of the values are within one standard deviation, of the mean;
¤	 About 95% of the values are within two standard deviation of the mean;
¤	 Practically 99.7% of the values are within three standard deviation of the mean.

5.5.5	 Some Other Measures of Dispersion
•	 Interquartile Range: 

¤	 The distance between the third quartile and the first quartile. The first and third quartiles, Q1 and 
Q3, respectively, locate the point below which 25% and 75% of the observations are located.
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¤	 Interquartile range = Q3 – Q1

¤	 Q1 = LQ1
 + 

(∑ k i=1
fi/4) – ∑fQ1–1

fQ1

 . CQ1
; Q3 = LQ3

 
3∑ 

k
 

i=1
fi/4 – ∑ fQ3–1

fQ3

 . CQ3
 

•	 Quartile Deviation: 
¤	 Quartile deviation is half the distance between the third and the first quartiles.
¤	 QD = (Q3 – Q1)/2

•	 Percentile Range: 
¤	 The 99 percentiles divide a distribution into 100 parts. The 10-to-90-percentile range is the 

distance between the 10th and 90th percentiles. 
¤	 Percentile range = P90 – P10

¤	 P10 = LP10
 + 

10
100  n – ∑ fp10–1

fP10

 . CP10
; P90 = LP90

 + 

90
100  n – ∑ fp90–1

fP90

 . CP90

•	 Box-Plots 
¤	 A graphical display based on quartiles—that helps us to picture a set of data.

5.5.6	 Relative Dispersion (Coefficient of Variation)
•	 A direct comparison of two or more measures of dispersion (e.g. standard deviations) is impossible 

especially when the data are in different units.  
•	 We need to convert each of the measures into a relative value, called coefficient of variation. This is 

a very useful measure when:
¤	 The data series are completely in different measurement units.
¤	 The data series in the same units, but the means are far apart. 

•	 Coefficient of variation allows us to compare the relative variability of two data sets.
•	 Coefficient of variation (CV): 

¤	 The ratio of the standard deviation to the mean, expressed as a percent.
¤	 CV = s

x
(100)

5.5.7	 Skewness
•	 Another characteristic that can be measured is the degree of skewness. 
•	 If a frequency distribution is symmetrical, the skewness is zero. 
•	 If one or more observations are extremely large, the distribution is positively skewed; and if one or 

more are extremely small, the distribution is negatively skewed. 
•	 Pearson’s Coefficient of Skewness:

¤	 r = 3(x
– – x~)

s
 or r = 3(x– – x̂)

s
.

¤	 r lies between –3 and +3 (positively or negatively skewed).

Teaching Notes
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Reference to PowerPoint Slides
•	 Slide 2 – �CHAPTER 5: � DESCRIPTIVE STATISTICS: DESCRIBING, EXPLORING AND 

COMPARING DATA
•	 Slide 3 – LEARNING OBJECTIVES
•	 Slide 4 – 5.1  INTRODUCTION
•	 Slide 5 – 5.1  INTRODUCTION (cont.) 
•	 Slide 6 – 5.2  FREQUENCY DISTRIBUTION
•	 Slide 7 – 5.2.1  Frequency Distribution for Qualitative Data
•	 Slide 8 – 5.2.2  Frequency Distribution for Quantitative Data
•	 Slide 9 – 5.2.3  Class Intervals and Midpoints (Quantitative Data)
•	 Slide 10 – 5.2.4  Suggestions on Constructing a Frequency Distribution (Quantitative Data)
•	 Slide 11 – 5.2.5  Relative Frequency Distribution
•	 Slide 12 – 5.2.6  Cumulative Frequency Distribution
•	 Slide 13 – 5.3  GRAPHIC REPRESENTATION OF A FREQUENCY DISTRIBUTION
•	 Slide 14 – 5.3.1  Stem-and-Leaf Display
•	 Slide 15 – 5.3.2  Histogram
•	 Slide 16 – 5.3.3  The Frequency Polygon
•	 Slide 17 – 5.3.4  Cumulative Frequency Polygon (Ogive)
•	 Slide 18 – 5.3.5  Other Graphic Representations of Data
•	 Slide 19 – 5.3.5  Other Graphic Representations of Data (cont.)
•	 Slide 20 – 5.4  MEASURES OF CENTRAL TENDENCY
•	 Slide 21 – 5.4.1  The Arithmetic Mean
•	 Slide 22 – 5.4.1  The Arithmetic Mean (cont.)
•	 Slide 23 – 5.4.2  The Median
•	 Slide 24–25 – 5.4.2  The Median (cont.)
•	 Slide 26 – 5.4.3  The Mode
•	 Slide 27–28 – 5.4.3  The Mode (cont.)
•	 Slide 29 – 5.4.4  The Geometric Mean
•	 Slide 30 – 5.4.5  Selecting an Average for Data in a Frequency Distribution 
•	 Slide 31 – 5.4.5  Selecting an Average for Data in a Frequency Distribution (cont.)
•	 Slide 32 – 5.5  MEASURES OF DISPERSION AND SKEWNESS
•	 Slide 33 – 5.5.1  Why Study Dispersion?
•	 Slide 34 – 5.5.2  Measures of Dispersion—Ungrouped Data
•	 Slide 35–36 – 5.5.2  Measures of Dispersion—Ungrouped Data (cont.)
•	 Slide 37 – 5.5.3  Measures of Dispersion—Grouped Data
•	 Slide 38 – 5.5.3  Measures of Dispersion—Grouped Data (cont.)
•	 Slide 39 – 5.5.4  Interpretation and Uses of the Standard Deviation
•	 Slide 40 – 5.5.4  Interpretation and Uses of the Standard Deviation (cont.)
•	 Slide 41 – 5.5.5  Some Other Measures of Dispersion
•	 Slide 42–44 – 5.5.5  Some Other Measures of Dispersion (cont.)
•	 Slide 45 – 5.5.6  Relative Dispersion (Coefficient of Variation) 
•	 Slide 46 – 5.5.6  Relative Dispersion (Coefficient of Variation) (cont.)
•	 Slide 47 – 5.5.7  Skewness 
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CHAPTER Inferential Statistics: 
Estimation and 
Hypothesis Testing6

Learning Objectives
The study of this chapter should enable you to:
❖	Define the estimators of population parameters
❖	Describe the interval estimation and construct the confidence intervals of population 

parameters 
❖	Define and apply various types of hypothesis tests 

Key Teaching Points
6.1	 Introduction
•	 Inferential statistics attempt to reach conclusions that go beyond the data.
•	 It determines the overall opinion of a population about a specific issue, or to test a statistical 

difference between groups. 
•	 There are two types of statistical inferences; estimation of population parameters and hypothesis 

testing. 
•	 Estimation theory is used to estimate the values of population parameters based on randomly 

selected empirical data. 
•	 A confidence interval provides an interval estimate for a population parameter and thus 

demonstrates the reliability of an estimate. It is determined by the degree of confidence or 
confidence level.

•	 Hypothesis testing is one of the most important tools of application of statistics to real life 
problems. It is a form of statistical inference that uses data from a sample.

6.2	 Estimation Theory
•	 A point estimate of some population parameter, θ is a single value θ̂ of a statistic, Θ̂ .
•	 The value x– of the statistic X

–
 computed from a sample n, is a point estimate of µ. 

•	 An estimator is not expected to estimate the population parameter without error. We do not 
expect X

–
 to estimate µ exactly, but certainly hope that it is not far off. 

•	 For a particular sample it is possible to obtain a closer estimate of µ by using the sample median  
X
~
 as an estimator. Not knowing the true µ, we must decide in advance whether to use X

–
 or X

~
 as 

estimator.

6.2.1	 Unbiased Estimator
•	 Let Θ̂  be an estimator whose value θ̂ is a point estimate of some unknown population parameter 

θ. 
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•	 A statistic Θ̂  is said to be an unbiased estimator if  its expected value is equal to θ.

6.2.2	 Variance of a Point Estimator
•	 If Θ̂1 and Θ̂2 are two unbiased estimators of the same parameter θ, we would choose the estimator 

whose sampling distribution has the smaller variance. 
•	 Hence, if  2

Θ̂2
 < 2

Θ̂2
, Θ̂1 is a more efficient estimator of θ than Θ̂2 .

•	 If we consider all unbiased estimators of θ, the one with the smallest variance is called the most 
efficient estimator, or minimum variance unbiased estimator (MVUE).

•	 For normal populations, one can show that both X
–

 and X
~

 are unbiased estimators of the population 
mean µ, but the variance of X

–
 is smaller than the variance of X

~
 .

•	 Both x– and x~ will, on the average, equal the population mean µ, but x– is likely to be closer to µ for 
a given sample, and thus X

–
 is more efficient than X

~
 .

6.3	 Interval Estimation
•	 An interval estimate of θ may be written as θ̂L < θ < θ̂U, where θ̂L and θ̂U depend on a random 

variable Θ̂  for a particular sample and its sampling distribution.  
•	 The standard error 2

Θ̂2
= 2/n decreases as the sample size n increases, and thus the estimate will be 

closer to the parameter θ, producing a shorter interval. 
•	 Different samples would produce different interval estimates.
•	 If P(θ̂L < θ < θ̂U ) = 1 – α, 0 < α < 1, then the probability of selecting a random sample that produces 

an interval containing θ is 1 – α. 
•	 The interval estimate θ̂L < θ < θ̂U is called a (1–α)100% confidence interval with (1–α) degree of 

confidence.  
•	 When α = 0.05, we have a 95% confidence interval, and when α = 0.01 we obtain a wider 99% 

confidence interval. 
•	 The wider the confidence interval is, the more confident we can be that the given interval contains 

the unknown parameter.

6.3.1	 Single Sample: Estimating the Mean
•	 The best estimator of the population mean, µ is the sample mean. 
•	 The sampling distribution of the sample mean is centered at µ with smaller variance than other 

estimators. Thus, the point estimate for µ is the sample mean. 
•	 Confidence Interval of µ: σ Known: 

¤	 If X
–

 is the mean of a random sample of size n from a population with known variance σ2, 
a (1 – α)100% confidence interval for µ is given by

	 x– – zα/2  


 √n
 < µ < x– + zα/2



 √n
Theorem 6.3.1
If x– is used as an estimate of µ, we can then be (1 – α)100% confident that the error will not exceed 
zα/2 /√n .

Theorem 6.3.2
If x– is used as an estimate of µ, we can be (1 – α)100% confident that the error will not exceed a 
specified amount e when n = (zα/2/e)

2.
•	 Confidence Interval for µ; σ Unknown:

¤	 If x– and s are the mean and standard deviation of a random sample of size n from a normal 
population with unknown σ2, a (1-α)100% confidence interval for µ 

		  x– – tα/2  
s

 √n
 < µ < x– + tα/2

s

 √n
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6.3.2	 Two Samples: Estimating the Difference between Two Means
•	 Confidence Interval for µ1 – µ2; σ1 and σ2 Known

	 (x–1 – x–2) – zα/2 √ 2
1

n1
 + 

2
2

n2
 < µ1 – µ2 < (x–1 – x–2) + zα/2 √ 2

1
n1

 + 
2

2
n2

•	 Confidence Interval for µ1 – µ2; σ1 = σ2 but Unknown

	 (x–1 – x–2) – tα/2 sp√ 1
n1

 + 
1
n2

 < µ1 – µ2 < (x–1 – x–2) +  tα/2 sp √ 1
n1

 + 
1
n2

	 s2
p = 

(n1 – 1)s
2
1 + (n2 – 1)s

2
2

n1 – n2
, tα/2,υ is the t-value with degrees of freedom υ = n1 + n2 – 2 

•	 Confidence Interval for µ1 – µ2; σ1 ≠ σ2 and Unknown

		  (x–1 – x–2) – tα/2√ s2
1 

n1
 + 

s2
2

n2

 < µ1 – µ2 < (x–1 – x–2) +  tα/2 √ s2
1 

n1
 + 

s2
2

n2

		  tα/2,υ is the t-value with degrees of freedom υ = (s2
1/n1 + s2

2 /n2)
2

[(s2
1/n1)

2/(n1 – 1)] + [(s
2
2/n2)

2/(n2 – 1)]

•	 Confidence Interval for µD = µ1 – µ2 for Paired Observations

		  d– – tα/2 
sd

 √n
 < µd < d– +  tα/2 

sd

 √n
, tα/2 is the t-value with degrees of freedom υ = n – 1

6.3.3	 Single Sample: Estimating a Proportion
•	 In a Binomial experiment, the proportion p is estimated by the statistic, P̂ = X/n; the point estimator 

of p where X is the number of successes in n trials.
•	 By CLT, for n sufficiently large, P̂ is approximately normally distributed with mean

		  µP̂ = E(P̂) = [ X
n ] = np

n
 = p, and variance 2

P̂
 = 2

x/n = 
2

x
n2  = 

npq
n2  = 

pq
n

•	 Large–Sample Confidence Interval for p
¤	 If p̂ is the proportion of successes in a random sample of size n, and q̂ = 1 – p̂, a (1 – α)100% 

confidence interval for the binomial parameter p is given by

		  p̂ – zα/2√ p̂q̂
n

  < p < p̂ + zα/2√ p̂q̂
n

  

Theorem 6.3.3
If p̂ is used as an estimate of p, we can be (1 – α)100% confident that the error will not exceed  
zα/2√p̂q̂/n .

Theorem 6.3.4
If p̂ is used as an estimate of p, we can be (1–α)100% confident that the error will be less than a 
specified amount e when the sample size is n = z2

α/2 p̂q̂/e2.

Theorem 6.3.5
If p̂ is used as an estimate of p, we can be at least (1 – α)100% confident that the error will not exceed 
a specified amount e when the sample size is n = z2

α/2/4e2 .
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6.3.4	 Two Samples: Estimating the Difference between Two Proportions
•	 By choosing independent samples from the two populations, the variables P̂1 and P̂2 will be 

independent, and we can conclude that P̂1 – P̂2 is approximately normally distributed with mean,

	 µp̂1– p̂2
 = p1 – p2 and variance σ2

p̂1– p̂2
 = 

p1q1
n1

 + 
p2q2
n2

.

•	 Large–Sample Confidence Interval for p1 – p2 
¤	 If p̂1 and p̂2  are the proportion of successes in random samples of size n1 and n2, q̂1 = 1 – p̂1 and 

q̂2 = 1 – p̂2, an approximate (1 – α)100% confidence interval for the difference of two binomial 
parameters p1 – p2 , is given by,

	 (p̂1  –  p̂2) – zα/2 √ 
p̂1q̂1
n1

 + 
p̂2q̂2
n2

   < p1 – p2 < ( p̂1 –  p̂2) +  zα/2  √ 
p̂1q̂1
n1

 + 
p̂2q̂2
n2

  

6.3.5	 Single Sample: Estimating the Variance
•	 Consider a normal population with σ2. When a random sample of size n is selected from the 

population, the calculated variance s2 will be used as the estimator of σ2. 
•	 Confidence Interval for σ2

¤	 If s2 is the variance of a random sample of size n from a normal population, (1-α) 100% confidence 
interval for σ2 is 

	 (n – 1)S2

2
α/2

 < σ2 < (n – 1)S2

2
1–α/2

, 2
α/2 and 2

1–α/2 are 2 – values with degree of freedom υ = n – 1

6.3.6	 Two Samples: Estimating the Ratio of Two Variances
•	 If σ2

1 and σ2
2 are the variances of normal populations, we can establish an interval estimate of σ2

1/ σ2
2 

by using the statistic F = σ2
2S

2
1/ σ2

1S
2
2. The random variable F has an F-distribution with v1 = n1 – 1 

and v2 = n2 – 1 degrees of freedom.
•	 Confidence Interval for σ2

1/ σ2
2

¤	 If s2
1 and s2

2 are the variances of independent samples of size n1 and n2 from normal populations, 
then a (1 – α) 100% confidence interval for σ2

1/ σ2
2  is

	
s2

1
s2

2

1
fα/2(v1, v2)

 < 
σ2

1
σ2

2
 < 

S2
1
S2

2
  fα/2(v1, v2), where v1 = n1 – 1 and v2 = n2 – 1

6.4	Te sts of Hypothesis
•	 Hypothesis is a proposition, statement, or assumption based on some previous observations about 

the value of a population parameter for testing purposes. 
•	 Hypothesis testing is a process based on some sample data and probability theory to conclude 

whether the hypothesis is reasonable and should not be rejected. 
•	 To test the validity of the proposition, we must select a sample from the population, calculate the 

sample statistics, and based on certain decision rules, accept or reject the hypothesis. 

6.4.1	 Five-Step Procedure for Testing a Hypothesis 
•	 Step 1: The Null Hypothesis and the Alternate Hypothesis

¤	 State the hypothesis to be tested—the null hypothesis, H0 
¤	 Either reject or ‘fail to reject’ the null hypothesis 
¤	 Alternate hypothesis H1 describes what we will conclude if we reject H0

•	 Step 2: The Level of Significance
¤	 Probability of rejecting the null hypothesis when it is actually true
¤	 Traditionally, 0.05 level is selected for consumer research projects, 0.01 for quality assurance, 

and 0.10 for political polling
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¤	 Type-I-error:  Rejecting H0 when it is actually true. P(Type-I-error) = α
¤	 Type-II-error:  Accepting H0 when it’s actually false. P(Type-II-error)= β 
¤	 Decisions the researcher could make and the possible consequences:

Null
Hypothesis

Researcher

Accepts H0 Rejects H0

If H0 is true and Correct decision Type I error

If H0 is false and Type II error Correct decision

•	 Step 3: The Test Statistic
¤	 There are many test statistics; z, t, F and χ2. 
¤	 The test statistic is a value, determined from sample information, used to determine whether or 

not to reject the null hypothesis.
•	 Step 4: The Decision Rule

¤	 A declaration of the situations under which H0 is rejected and not rejected. 
¤	 The rejection region describes the location of all those values that are so small or large that the 

probability of their occurrence under a true H0 is rather slim. 
¤	 The dividing point between the regions where H0 is rejected and not rejected is called the critical 

value.
•	 Step 5: Making a Decision

¤	 Reject or not to reject H0 based on rejection region and critical value.

6.4.2	 One-Tailed and Two-Tailed Tests of Significance and p-Value
•	 Two types of tests of significance; a one-tailed test looks for an increase or decrease in parameter, 

and a two-tailed looks for any change in parameter. 
•	 One-Tailed and Two-Tailed Tests 

¤	 The region of rejection is only in the right (upper) tail of the curve.
¤	 To determine the location of the rejection region is to look at the direction in which the inequality 

sign in the alternate hypothesis is pointing (< or >). 
¤	 A test is one-tailed when the alternate hypothesis states a direction, for example, H1: µ < 70 (left 

tail) or H1: µ > 70 (right tail).
¤	 If no direction is specified under the alternate hypothesis, a two-tailed test is being applied, for 

example, H1: µ ≠ 70. 
¤	 In two-tailed test, the region of rejection is in both tails (divided equally).

•	 p-Value in Hypothesis Testing
¤	 p-value is the smallest level of significance, α, for which the observed data indicates that the null 

hypothesis should be rejected.
¤	 If p-value is smaller than α, H0 is rejected; if it is larger than α, H0 is not rejected. 

6.4.3	 Testing for the Population Mean: Population Variance Known
•	 Assumption: A sample of size n from a normal population with unknown mean but known 

variance.
•	 H0: µ = µ0 versus H1: µ > µ0, µ < µ0, or µ ≠ µ0.

•	 Test Statistic: z = (x– – µ0)

/ √n
. Rejection Region: z > zα, z < -zα, or |z| > zα/2.
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6.4.4	� Testing for the Population Mean: Large Sample, Population Variance 
Unknown

•	 Assumption: A sample of size n (large) from a normal population with unknown mean and 
unknown variance.

•	 H0: µ = µ0 versus H1: µ > µ0, µ < µ0, or µ ≠ µ0.

•	 Test Statistic: z = (x– – µ0)

s/ √n
. Rejection Region: z > zα, z < -zα, or |z| > zα/2.

6.4.5	� Testing for the Population Mean: Small Sample, Population Variance 
Unknown

•	 Assumption: A sample of size n (small) from a normal population with unknown mean and 
unknown variance.

•	 H0: µ = µ0 versus H1: 	µ > µ0, 	 µ < µ0, or µ ≠ µ0.

•	 Test Statistic: t = x– – µ0

s/ √n
. Rejection Region: t > tα, t < –tα, or |t| > tα/2; degrees of freedom = n–1.

6.4.6	 Testing for the Two Population Means: Population Variances Known
•	 Assumption: Two samples of size n1 and n2 from two normal populations with unknown means but 

known variances.
•	 H0: µ1 – µ2 = d0 versus  H1: µ1 – µ2> d0, µ1 – µ2< d0, or µ1 – µ2≠ d0.

•	 Test Statistic: z = 
(x–1

 – x–2) – d0

√ 2
1

n1
 + 

2
2

n2

. Rejection Region: t = z > zα, z < –zα, or |z| > zα/2.

6.4.7	� Testing for the Two Population Means: Large Samples, Population Variances 
Unknown

•	 Assumption: Two samples of size n1 and n2 (large) from two normal populations with unknown 
means and unknown variances.

•	 H0: µ1 – µ2 = d0 versus H1: µ1 – µ2> d0, µ1 – µ2< d0, or µ1 – µ2≠ d0.

•	 Test Statistic: z = 
(x–1

 – x–2) – d0

 √ (s2
1/n1) + (s

2
2/n2)

.	 Rejection Region: z > zα, z < –zα, or |z| > zα/2.

6.4.8	� Testing for the Two Population Means: Small Samples, Population Variances 
Unknown

•	 Assumption: Two independent samples of size n1 and n2 (small) from a normal population with 
unknown mean and unknown variance, i.e. σ1 = σ2 = σ. 

•	 H0: µ1 – µ2 = d0 versus H1: µ1 – µ2> d0, µ1 – µ2< d0, or µ1 – µ2≠ d0.

•	 Test Statistic: t = (x1
 – x2) – d0

sp √ ((1/n1) + (1/n2))
, sp = √(n1 – 1)(s

2
1) + (n2 – 1)(s

2
2)

n1 + n2 – 2
.

•	 Rejection Region: t > tα, t < –tα, or |t| > tα/2, degrees of freedom = n1+n2–2.

6.4.9	 Testing for the Two Population Means: Paired Observations
•	 H0: µD = d0 versus H1: µD > d0, µD < d0, or µD ≠ d0.

•	 Test Statistic: t = (d– – d0)

sd/ √n
, sd = √ ∑d2

 – (∑d)2/n
n – 1

.

•	 Rejection Region: t > tα, t < –tα, or |t| > tα/2, degrees of freedom = n – 1. 
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6.4.10	 Choice of Sample Size for Testing Mean (and The Power of a Test)
•	 Suppose we wish to test the hypothesis H0: µ = µ0 versus H1: µ > µ0, with a significance level α when 

the variance is known. 
•	 For a specific alternative, say µ = µ0 + δ, the power of our test is 

1 – β = P(X
–
 > a, when µ = µ0 + δ)

•	 Therefore, β = P(X
–

 < a, when µ = µ0 + δ) = P[ X
–

 – (µ0 + δ)

/ √n
 < 

a – (µ0 + δ)

/ √n ].
	 β = [Z < 

a – µ0

/ √n
  – δ

/ √n ] = P(Z < zα – δ

/ √n ), from which we conclude that 

	 –zβ = zα –  δ

/ √n
, and hence the choice of sample size n = (zα + zβ)

2 2/δ2, a result that is also 

	 true when the alternative hypothesis is µ < µ0. 
•	 In the case of a two-tailed test we obtain the power 1–β for a specified alternative when 

n ≈ (zα/2 + zβ)
2 2/δ2.

Teaching Notes

Reference to PowerPoint Slides
•	 Slide 2 – �CHAPTER 6: � INFERENTIAL STATISTICS: ESTIMATION AND HYPOTHESIS 

TESTING
•	 Slide 3 – LEARNING OBJECTIVES
•	 Slide 4 – 6.1  INTRODUCTION
•	 Slide 5 – 6.1  INTRODUCTION (cont.) 
•	 Slide 6 – 6.2  ESTIMATION THEORY 
•	 Slide 7 – 6.2.1  Unbiased Estimator
•	 Slide 8 – 6.2.2  Variance of a Point Estimator
•	 Slide 9 – 6.3  INTERVAL ESTIMATION
•	 Slide 10 – 6.3  INTERVAL ESTIMATION (cont.)
•	 Slide 11 – 6.3.1  Single Sample: Estimating the Mean
•	 Slide 12–13 – 6.3.1  Single Sample: Estimating the Mean (cont.)
•	 Slide 14 – 6.3.2  Two Samples: Estimating the Difference between Two Means
•	 Slide 15–17 – 6.3.2  Two Samples: Estimating the Difference between Two Means (cont.)
•	 Slide 18 – 6.3.3  Single Sample: Estimating a Proportion
•	 Slide 19–21 – 6.3.3  Single Sample: Estimating a Proportion (cont.)
•	 Slide 22 – 6.3.4  Two Samples: Estimating the Difference between Two 	 Proportions
•	 Slide 23 – 6.3.5  Single Sample: Estimating the Variance
•	 Slide 24 – 6.3.6  Two Samples: Estimating the Ratio of Two Variances
•	 Slide 25 – 6.4  TESTS OF HYPOTHESES
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•	 Slide 26 – 6.4.1  Five-Step Procedure for Testing a Hypothesis
•	 Slide 27–30 – 6.4.1  Five-Step Procedure for Testing a Hypothesis (cont.)
•	 Slide 31 – 6.4.2  One-Tailed and Two-Tailed Tests of Significance and p-Value
•	 Slide 32–33 – 6.4.2 � One-Tailed and Two-Tailed Tests of Significance and p-Value (cont.)
•	 Slide 34 – 6.4.3  Testing for the Population Mean: Population Variance Known
•	 Slide 35 – 6.4.4  Testing for the Population Mean: Large Sample, Population Variance Unknown 
•	 Slide 36 – 6.4.5  Testing for the Population Mean: Small Sample, Population Variance Unknown
•	 Slide 37 – 6.4.6 � Testing for the Two Population Means: Population Variances Known 
•	 Slide 38 – 6.4.7 � Testing for the Two Population Means: Large Samples, Population Variances 

Unknown
•	 Slide 39 – 6.4.8 � Testing for the Two Population Means: Small Samples, Population Variances 

Unknown 
•	 Slide 40 – 6.4.9  Testing for the Two Population Means: Paired Observations 
•	 Slide 41 – 6.4.10  Choice of Sample Size for Testing Mean (and The Power of a Test) 
•	 Slide 42 – 6.4.10  Choice of Sample Size for Testing Mean (and The Power of a Test) (cont.)
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CHAPTER

F-Test and Analysis 
of Variance (ANOVA)7

Learning Objectives
The study of this chapter should enable you to:
❖	Describe the F-distribution and apply the F-test for comparing two population variances
❖	Define the analysis of variance (ANOVA)
❖	Apply ANOVA to compare several population means simultaneously

Key Teaching Points
7.1	 Introduction
•	 A statistical test that follows an F-distribution under the null hypothesis is referred to as an 

F-test. 
•	 It is often used while comparing statistical models to decide the most appropriate model which 

fits the population based on the available sample data. 
•	 The F-distribution is also a probability distribution as it is used as the test statistic for a number 

of situations: 
¤	 It is used to test whether two samples are from populations with equal variances.
¤	 It is also applied in a simultaneous comparison of two or more population means, called 

analysis of variance (ANOVA). 
•	 In both situations, the populations are normal.

7.2	T he F-Distribution
•	 F-distribution is a continuous distribution. 
•	 It is frequently used as the null distribution of a test statistic, particularly in likelihood-ratio tests, 

and most frequently in ANOVA.

7.2.1	 Characteristics of the F-Distribution
•	 There are a variety of F-distributions; the degrees of freedom in numerator and in denominator 

determine a particular F-distribution. These two parameters also determine the shape of 
distribution. 

•	 The total area under the curve is 1. 
•	 The values of F are always greater than or equal to zero.
•	 The curve representing an F-distribution is positively skewed. 
•	 It is asymptotic, with a range value from 0 to ∞. As X increases, the F curve approaches X-axis; 

similar to normal probability distribution. 
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7.2.2	 Comparing Two Population Variances and Validating Assumptions
•	 F-distribution is used to test the hypothesis that the variances of two normal populations are 

equal.
•	 This is useful for determining whether one normal population has more variation than another. 
•	 F-test can also be used to validate assumptions for certain statistical tests; for instance, the 

assumption ‘two population variances are equal’ used in a t-test.
•	 Whether to establish that one population has more variation than another, or to verify a statement 

with respect to a statistical test, first the null hypothesis has to be stated:  
¤	 H0: The variances of two (or more) normal populations are equal, vs.
¤	 H1: The variances are different; H0: σ

2
1 = σ2

2 vs. H1: σ
2
1 ≠ σ2

2 .
•	 To conduct the test, a random sample of n1 is obtained from one population, and a sample of n2 is 

obtained from second population.
•	 The test statistic is s2

1 / s
2
2  (the ratio of sample variances). 

•	 If the null hypothesis is true, the test statistic follows an F-distribution with (n1 – 1) degrees of 
freedom in numerator and (n2 – 1) degrees of freedom in denominator. 

•	 The sample with larger variance is considered as the first sample and its variance is placed in the 
numerator. The test statistic (F ratio) is always more than 1.

•	 The rejection region is determined by the upper-tail critical value of the F distributions using α/2 
and two values of degrees of freedom. 

7.3	 Analysis of Variance (ANOVA)
•	 F-distribution is also used for testing the equality of more than two means using a technique called 

ANOVA (analysis of variance). 
•	 It consists of statistical models and procedures wherein the sample variance is partitioned into 

components arising from the various sources of variation.    
•	 ANOVA makes available a statistical test regardless of whether or not the means of some groups 

are all equal, and hence generalizes a t-test for more than two groups. 
•	 ANOVA has an obvious advantage over the two-sample t-test. For comparing three or more means, 

we have to perform multiple t-tests that would lead to a higher probability of a type I error, unlike 
ANOVA which performs comparisons at once.   

•	 ANOVA models can be divided into three classes; fixed-effects, random-effects, and mixed-
effects. 

•	 Fixed-effects models are employed to situations in which one or more treatments are applied to the 
test subjects to see if there are changes in the dependent variable.   

•	 Random-effects models are applied when the treatments are not predetermined. Random effects 
occur when various factors are sampled from a large population. Since the factors themselves are 
random variables, several assumptions and the method of contrasting the treatments vary from 
fixed-effects model. 

•	 Most of the random-effects or mixed-effects models cannot be used in deducing inferences about 
the specific sampled factors. 

•	 If there is concern in the realized value of the random effects, then the best linear unbiased 
prediction could be employed to get a ‘prediction’.   

7.3.1	 Assumptions of ANOVA
•	 The term ‘treatment’ is used to identify the different populations being examined. 
•	 A treatment is defined as a cause, or specific source, of variation in a set of data. 
•	 There are a number of approaches to ANOVA. The most common is to use a linear model that 

relates the response to treatments.
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•	 Even if the statistical model is non-linear, it can be approximated by a linear model for which an 
ANOVA might be suitable. 

•	 Many consider a linear model to perform the ANOVA, thus created the assumptions about the 
probability distribution of responses:
¤	 Independence: The samples are independent and randomly selected from the populations; 

simplifies the analysis. 
¤	 Normality: The populations being studied are normally distributed. 
¤	 Equality (or homogeneity) of variances: The populations have equal variances. Model-based 

approaches usually assume that the variance is constant. 

7.3.2	 Analysis of Variance Procedure

•	 The Test Statistic is F = 

Estimated population, variance based on variation  
between sample means

Estimated population, variance based on variation within samples
•	 Common terminology for numerator is ‘between-sample variance’; for denominator, it is ‘within-

sample variance’. 
•	 Numerator has k-1 degrees of freedom and denominator has N – k degrees of freedom, where k is 

the number of treatments and N is the total number of observations.
•	 ANOVA table:

Source of variation (1) – Sum of 
squares

(2) – Degrees of 
freedom

(3) – Mean square
(1)/(2)

Between treatments SST k – 1 SST/(k – 1) = MSTR

Error (within treatments) SSE N – k SSE/(N – k) = MSE

Total SS Total

	 F = MSTR/MSE
¤	 MSTR is the mean square between treatments. 
¤	 MSE is the mean square due to error (also called mean square within treatments).
¤	 ‘Mean square’ refers to sum of squares divided by the degrees of freedom, exactly how a variance 

is calculated. 

	 SST = ∑[ T2
c

nc ] – (∑X)2

N
, SSE = ∑X2 – ∑[ T2

c
nc ] , SS Total =  ∑X2 – (∑X)2

N
 

Teaching Notes

Reference to PowerPoint Slides
•	 Slide 2 – CHAPTER 7: F-TEST AND ANALYSIS OF VARIANCE (ANOVA)
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•	 Slide 3 – LEARNING OBJECTIVES
•	 Slide 4 – 7.1 INTRODUCTION
•	 Slide 5 – 7.2 THE F-DISTRIBUTION
•	 Slide 6 – 7.2.1  Characteristics of the F-Distribution
•	 Slide 7 – 7.2.2  Comparing Two Population Variances and Validating Assumptions
•	 Slide 8 – 9 – 7.2.2 Comparing Two Population Variances and Validating Assumptions (cont.)
•	 Slide 10 – 7.3 ANALYSIS OF VARIANCE (ANOVA)
•	 Slide 11–13 – 7.3 ANALYSIS OF VARIANCE (ANOVA) (cont.)
•	 Slide 14 – 7.3.1 Assumptions of ANOVA
•	 Slide 15 – 7.3.1 Assumptions of ANOVA (cont.)
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CHAPTER

Chi-square 
Applications8

Learning Objectives
The study of this chapter should enable you to:
❖	Describe the Chi-square test
❖	Apply the Chi-square test for homogeneity
❖	Apply Chi-square test of goodness-of-fit
❖	Apply Chi-square test of independence between two variables 

Key Teaching Points
8.1	 Introduction
•	 The Chi-square test is one of the simplest and most widely accepted non-parametric tests in 

various fields. 
•	 It does not require any assumptions about the population—wider applicability. 
•	 It is a statistical measure for homogeneity, goodness-of-fit, or independence.
•	 The Chi-square test can be applied to:

¤	 Establish whether a sample was drawn from a normal population
¤	 Conclude whether two random variables are independent 
¤	 Verify whether or not categories of a variable are represented in the same proportions in two 

or more populations.
•	 The value of χ2 represents the magnitude of discrepancy between observed and expected. 
•	 If the χ2 = 0, there is no significant difference between observed and expected. 
•	 The higher the value of χ2, the higher it would be for the discrepancy between observed and 

expected frequencies.  
•	 Conditions of χ2 test: Chi-square test have the following conditions and if fail to satisfy, leads to 

many rejections of null hypothesis:
¤	 Sample observations should be independent. 
¤	 Sample observations should be drawn randomly. 
¤	 Total frequency should at least contain ‘50’ observations. 
¤	 Expected frequency in each cell should be more than ‘5’.

•	 Applications: Basically, Chi-square test has the following applications: 
¤	 Test of Homogeneity. 
¤	 Test of Goodness-of-fit. 
¤	 Test of Independence. 
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8.2	T est of Homogeneity
•	 Chi-square test for homogeneity is a test used to determine whether several populations are similar 

or ‘homogeneous’ with respect to some characteristics. 
•	 The χ2 test is applied when dependent variable is dichotomous (has only two categories) while 

t-test is applied when dependent variable is continuous. 

•	 Test statistic: χ2 = ∑ (O – E)2

E

8.3	T est of Goodness-of-Fit
•	 The Chi-square test of goodness-of-fit is used to test if a sample of data came from a population with 

a specific distribution. 
•	 It enables us to ascertain how well a specific distribution fits the sample data. 
•	 The null hypothesis usually states that the sample is drawn from the assumed distribution. 
•	 A Chi-square of zero means that the model is a perfect fit of the observations to the expected 

frequencies.
•	 The expected frequency for a Poisson distribution: Expected Frequency = N ․ e

–m . mx

x!

8.4	T est of Independence
•	 The test of independence is used to test the independence of two variables. 
•	 If variables are uncorrelated, they are said to be independent; if correlated, they are said to be 

dependent.
•	 The null hypothesis is that the two variables are independent. 
•	 This test tells whether or not any dependence relationship exists but does not provide either degree 

or direction of dependency.

Teaching Notes

Reference to PowerPoint Slides
•	 Slide 2 – CHAPTER 8: CHI-SQUARE APPLICATION
•	 Slide 3 – LEARNING OBJECTIVES
•	 Slide 4 – 8.1  INTRODUCTION
•	 Slide 5–7 – 8.1  INTRODUCTION (cont.)
•	 Slide 8 – 8.2  TEST OF HOMOGENEITY
•	 Slide 9 – 8.3  TEST OF GOODNESS-OF-FIT 
•	 Slide 10 – 8.4  TEST OF INDEPENDENCE
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CHAPTER Simple Linear 
Regression and 
Correlation9

Learning Objectives
The study of this chapter should enable you to:
❖	Define, plot and interpret a scatter diagram
❖	Describe simple linear regression and develop a regression equation using method of least 

squares
❖	Construct confidence intervals and prediction intervals for values of a dependent variable
❖	Define correlation analysis and calculate coefficient of correlation, coefficient of determination 

and rank correlation

Key Teaching Points
9.1	 Introduction
•	 Many times we come across various phenomena where two variables tend to move either 

in the same or opposite direction. Such a relation between any two variables is called simple 
correlation. 

•	 It is essential to have a forecast for an unknown variable. A forecast can be made through a 
Regression analysis—one of the most widely used and acceptable statistical techniques for 
analyzing observational data.

•	 It is possible to study the relationship between two or more variables and develop an equation 
that allows us to estimate an unknown variable based on the existing data.

9.2	 Scatter Diagram
•	 A useful first step in looking at the relationship between two variables is to portray the information 

in a scatter diagram.
•	 For a scatter diagram, it is a common practice to put the dependent variable on the vertical 

axis (Y) and the independent variable on the horizontal axis (X). 

9.3	 Simple Linear Regression
•	 In regression analysis, we develop an equation (regression equation) to express the relationship 

between two variables, and estimate the value of the dependent variable Y based on a selected 
value of the independent variable X.

9.3.1	 Method of Least Squares 
•	 Judgment can be eliminated by determining the regression line using a mathematical method 

called least squares method. 
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•	 This method gives the ‘best-fitting’ straight line. It minimizes the sum of the squares of the vertical 
deviations along the line. 

•	 The general form of the regression equation is Y’ = a + bX.
•	 Regression equation is just an estimate of the relationship between the two variables. 
•	 The values of a and b are usually referred to as the regression coefficients.

	 b = n(∑XY) – (∑X)(∑Y)
n(∑X2) – (∑X)2 , 

	 a = ∑Y
n  – b∑X

n .

9.3.2	 The Standard Error of Estimate
•	 In the scatter diagram, all of the points do not lie on the regression line; perfect prediction is 

practically impossible. 
•	 What is needed is a measure that would indicate how precise the prediction of Y is based on 

X—called the standard error of estimate. 
•	 The standard error of estimate, sy.x, measures the dispersion about an average line, the regression 

line.

	 sy.x = √ ∑(Y – Y)2

n – 2

•	 For a large number of observations, sy.x = √ ∑Y2 – a(∑Y) – b(∑XY)
n – 2

 may be used.

9.3.3	 Linear Regression Assumptions and Empirical Rule
•	 Four assumptions of linear regression: 
	 (i)	 There is a group of normally distributed Y values for each X. 
	 (ii)	 The normal distributions of Y values have means that lie on the regression line. 
	 (iii)	 These normal distributions have equal standard deviations. 
	 (iv)	 The values of Y are independent.
•	 The Empirical Rule states that if the values are normally distributed: 
	 X

–
 ± 1s encompasses approximately the middle 68 percent of the values.

	 X
–

 ± 21s encompasses approximately the middle 95.5 percent of the values.
	 X

–
 ± 31s encompasses approximately the middle 99.7 percent of the values.

	 (If the distribution is highly skewed, these relationships will not hold.)
•	 The same relationships exist between the average predicted value, Y, and the standard error of 

estimate, sy.x. 
•	 If the scatter about the regression line is normally distributed and the sample is large, then:
	 Y1 ± 1sy.x encompasses the middle 68 percent of the observed values.
	 Y1 ± 2sy.x encompasses the middle 95.5 percent of the observed values.
	 Y1 ± 3sy.x encompasses the middle 99.7 percent of the observed values.
•	 Standard deviation s measures the spread of Xs around the mean whereas standard error of estimate 

sy.x measures the spread of points around a regression line.  

9.3.4	 Significance Test (Linearity)
•	 The significance of variable X with Y can be checked using t-test. 
•	 H0: β = 0 versus H1: β ≠ 0; let level of significance be 5%. 

	 t = b
SE(b)       SE(b) = √ ∑(Y – Y)2

(n – 2) ∑(X – X
–
)2
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9.4	C onfidence Interval and Prediction Interval
•	 We are interested in providing interval estimates of two types:

¤	 Confidence interval—reports the mean value for a given X
¤	 Prediction interval—reports the range of values for a particular X. 

9.4.1	 Confidence Interval of an Estimate 
•	 The confidence interval for the mean value of Y for a given X: 

	 Y±tα/2,v (sy.x)√ 1
n  + (X – X

–
)2

∑X2 – [(∑X)2/n]

9.4.2	 Prediction Interval of an Estimate
•	 The prediction interval for a particular value of Y for a given value of X: 

	 Y±tα/2,v (sy.x)√1 + 1
n  + (X – X

–
)2

∑X2 – [(∑X)2/n]
•	 There is an important distinction between a confidence interval and a prediction interval; a 

confidence interval refers to all cases with a given value of X whereas a prediction interval refers to 
a particular case for a given value of X. 

•	 The prediction interval will have the wider ranges a result of the extra 1.

9.5	C orrelation Analysis
•	 Correlation analysis is a group of statistical techniques used to measure the strength of the 

association between numerical variables. 
•	 Correlation is defined as the degree of linear relationship between two or more variables and also 

referred to as covariation.
•	 The correlation between two variables is sometimes called a simple correlation. 
•	 A correlation is also used to represent the strength of a relationship between two factors which is 

referred to as a statistical index. 
•	 A correlation does not provide information on cause and effect. 
•	 The degree of linear relationship between one (dependent) variable and several other (independent) 

variables is called multiple-correlation. 
•	 Partial correlation is the degree of linear relationship between two variables after excluding the 

effects of other factors.

9.5.1	 Types of Correlation
•	 A simple correlation can be further divided into positive and negative correlations.
•	 Positive correlation—the values of two variables are increasing or decreasing in the same 

direction.
•	 Negative correlation—the values of two variables are moving in opposite directions.
•	 If there is no relation exists between, the variables are said to be uncorrelated. 
•	 There are also other types of correlation; if the change in one variable is in a constant ratio with the 

change in the other variable, it is referred to as a linear correlation. Otherwise, if the change is not 
constant, it is referred to as a non-linear correlation. 

9.5.2	 Simple Correlation and Statistical Relationship
•	 In correlation analysis, we will develop some statistical measures to portray and explain more 

precisely the relationship between these two variables. 
•	 Correlation analysis essentially seeks to determine how strong the relationship between two 

variables is. 
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•	 Relationship can be measured using the coefficient of correlation on a scale –1 to +1. 
•	 The scatter diagram is a useful first step when looking at the relationship between two variables.

9.5.3	 Coefficient of Correlation
•	 Coefficient of correlation describes the strength of the relationship between two sets of variables—

Pearson’s r, the Pearson product-moment coefficient of correlation. 
•	 If there is absolutely no relationship between two sets of variables, Pearson’s r = 0. 
•	 A coefficient of correlation r close to 0 (say, 0.08) shows that the relationship is quite weak; the 

same conclusion for r = –0.08. 
•	 Coefficients of –0.91 and +0.91 have equal strength; both indicate very strong correlation between 

the two sets of variables. 
•	 Thus, the strength of the correlation does not depend on the direction.
•	 If the correlation is weak, there is considerable scatter about a straight line drawn through the 

centre of the data. 
•	 For a strong relationship, there is very little scatter about the straight line. 

	 r = n(∑XY) – (∑X)(∑Y)

 √ [n∑X2 – (∑X)2][n∑Y2 – (∑Y)2]

9.5.4	 Coefficient of Determination
•	 A measure that has a more exact meaning is the coefficient of determination—computed by 

‘squaring’ the coefficient of correlation. 
•	 Coefficient of determination is the proportion of the total variation in the dependent variable Y 

that is explained by the variation in the independent variable X.

9.5.5	 Rank Correlation
•	 To study the relationship between sets of ranked data, a measure called Spearman’s coefficient of 

rank correlation, rs, is used.

	 rs = 1 – 6∑d2

n(n2 – 1)
•	 The coefficient of rank correlation can assume any value from –1.00 to +1.00. 
•	 A value of –1.00 indicates perfect negative correlation and a value of +1.00 indicates perfect positive 

correlation among the ranks. 
•	 A rank correlation of 0 indicates that there is no association among the ranks. 
•	 A rank correlation of –0.84 and +0.84 both indicate a strong association.

Teaching Notes
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Reference to PowerPoint Slides
•	 Slide 2 – CHAPTER 9: SIMPLE LINEAR REGRESSION AND CORRELATION
•	 Slide 3 – LEARNING OBJECTIVES
•	 Slide 4 – 9.1  INTRODUCTION
•	 Slide 5 – 9.1  INTRODUCTION (cont.) 
•	 Slide 6 – 9.2  SCATTER DIAGRAM
•	 Slide 7 – 9.3  SIMPLE LINEAR REGRESSION
•	 Slide 8 – 9.3  SIMPLE LINEAR REGRESSION (cont.)
•	 Slide 9 – 9.3.1  Method of Least Squares
•	 Slide 10 – 9.3.1  Method of Least Squares (cont.)
•	 Slide 11 – 9.3.2  The Standard Error of Estimate
•	 Slide 12 – 9.3.3  Linear Regression Assumptions and Empirical Rule
•	 Slide 13–14 – 9.3.3  Linear Regression Assumptions and Empirical Rule (cont.)
•	 Slide 15 – 9.3.4  Significance Test (Linearity)
•	 Slide 16 – 9.4  CONFIDENCE INTERVAL AND PREDICTION INTERVAL
•	 Slide 17 – 9.4.1  Confidence Interval of an Estimate
•	 Slide 18 – 9.4.2  Prediction Interval of an Estimate
•	 Slide 19 – 9.5  CORRELATION ANALYSIS
•	 Slide 20 – 9.5  CORRELATION ANALYSIS (cont.)
•	 Slide 21 – 9.5.1  Types of Correlation
•	 Slide 22 – 9.5.1  Types of Correlation (cont.)
•	 Slide 23 – 9.5.2  Simple Correlation and Statistical Relationship
•	 Slide 24 – 9.5.3  Coefficient of Correlation
•	 Slide 25–29 – 9.5.3  Coefficient of Correlation (cont.)
•	 Slide 30 – 9.5.4  Coefficient of Determination
•	 Slide 31 – 9.5.5  Rank Correlation
•	 Slide 32 – 9.5.5  Rank Correlation (cont.)
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CHAPTER

Time Series Analysis 
and Forecasting10

Learning Objectives
The study of this chapter should enable you to:
❖	Understand the concepts of trend, cyclical variation, seasonal variation and irregular variation
❖	Describe a linear trend, use least square and moving-average methods to analyze trend
❖	Describe seasonal variation, determine a seasonal index and use deseasonalized data to forecast
❖	Forecast using exponential smoothing with trend and  when appropriate, applying a seasonal 

effect 

Key Teaching Points
10.1	 Introduction
•	 A time series is a sequence of data points measured successively at uniform time intervals. 
•	 An analysis of a time series can be used by management to make current decisions, long-term 

forecasting and planning. 
•	 It is important to obtain long-term forecasts to allow sufficient time, for instances, for developing 

new plants, planning of raw materials, and obtaining financial supports.
•	 Time series analysis consists of methods for analyzing time series data to extract important 

statistics and other features of the data.
•	 Time series data have a natural sequential order of observations which makes the analysis 

different from general data analysis.

10.2	 Elements of Time Series 
•	 Four elements (component factors) to a time series; trend, cyclical variation, seasonal variation 

and irregular (random) variation. 
•	 The classical multiplicative time series model states that any observed value in a time series is the 

product of these factors. 
•	 When the time series data are recorded annually, an observation Yi for the year i may be expressed 

as Yi = Ti.Ci.Ii; Ti, Ci, Ii are trend, cyclical and irregular components. 
•	 When the time series are recorded either quarterly or monthly, an observation Yi for the time 

period i may be expressed as  Yi = Ti.Si.Ci.Ii; Si is the seasonal components. 
•	 The first step in a time series analysis is to plot the data and observe their tendencies over time - 

whether there is a trend or whether the series oscillates over time. 

10.2.1	 Trend
•	 The secular (long-term) trend can be recognized by a smooth long-term direction. 
•	 The trends may move upward, decline or remain the same over a period of time.
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10.2.2	 Cyclical Variation
•	 Another important time series component. 
•	 The business cycle typically consists of four periods in sequence; prosperity, recession, depression 

and recovery. 
•	 During a recession, business and economic time series are below their long-term trends, and 

during prosperity, these series are above their long-term trends.
•	 The fluctuations of a business are the results of a cyclical variation—has to go through these four 

periods consecutively. 

10.2.3	 Seasonal Variation
•	 Another component of a time series. 
•	 Many sales, production and other series fluctuate with the seasons.  
•	 Most business and economic series have recurring seasonal patterns.

10.2.4	 Irregular Variation 
•	 Also referred to as 'residual variation' since it represents what is left after the trend, cyclical and 

seasonal variations. 
•	 Irregular fluctuation occurs due to unforeseen events such as natural disasters. 
•	 Most analysts divide the irregular variation into episodic and residual variation. 
•	 The episodic fluctuations can be identified but cannot be predicted. 
•	 When the episodic fluctuations have been eliminated, what remains is the residual variation. 
•	 The residual fluctuations cannot be identified and predicted. 
•	 Both episodic and residual variations cannot be projected into the future.

10.3	T rend Analysis
•	 The concept of gathering information and spotting a pattern (trend).
•	 Even though it is frequently applied to foresee future events, it could also be applied to estimate 

uncertainties based on past events.

10.3.1	 Linear Trend
•	 The long-term trend of business and economic time series frequently approximates a straight line. 

The equation of the straight line may be written as Y’ = a + bt.

10.3.2	 Estimation of Trend Analysis by Least Squares Method 
•	 Common method of constructing a straight line equation through data points to obtain ‘best-

fitting’ line is called the least squares method. 
•	 It uses calculus to determine the minimum sum of squares of the vertical differences of each point 

from the suggested straight line. 
•	 Two unknown parameters (a and b) that give the least squares equation are determined using the 

following equations  

	 b = ∑tY – (∑Y)(∑t)/n
∑t2 – (∑t)2/n

 , a = ∑Y
n

 – b ( ∑t
n )

10.3.3	 Estimation of Trend Analysis by Moving-Average Method
•	 Moving average method is one of the most popular approaches for smoothing out time series data; 

also the basic technique for measuring the seasonal fluctuation. 
•	 The moving-average smoothes out the fluctuations by ‘moving’ the arithmetic means through the 

time series.
•	 In practice, moving-average method would not be able to produce a straight line for the trend. 
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10.4	Sea sonal Variation
•	 Another component of a time series. Many business and economic series have periods of above- 

and below-average activities during the year. 
•	 In the manufacturing industry, the main reason for analyzing the seasonal variation is to ensure an 

adequate supply of raw materials and manpower.
•	 Seasonal variation analysis over a period of years can be exploited to assess the current sales. An 

index can be used to represent the sales of a particular product. 

10.4.1	 Determining a Seasonal Index 
•	 For monthly data, there are 12 indexes (12-month period). For quarterly data (every three months), 

there are 4 seasonal indexes (four typical seasons). 
•	 Each index is written as a percent and the average is equal to 100.0. Each index indicates the level 

of a value in relation to the average (100.0). 
•	 A number of approaches have been developed to compute the typical seasonal pattern in a time 

series. The most common is the ratio-to-moving-average method. 
•	 The method removes the trend, cyclical and irregular components from the data. 
•	 The resulting numbers are called the typical seasonal indexes.

10.4.2	 Deseasonalizing Data
•	 The typical indexes are important in adjusting a time series for seasonal variation. 
•	 The resulting series is referred to as deseasonalized or seasonally adjusted series. 
•	 ‘Deseasonalizing’ aims at removing the seasonal variation so that the cycle and trend can be 

studied. 

10.4.3	 Using Deseasonalized Data to Forecast
•	 The seasonally adjusted forecasts can be produced by combining the process for identifying trend 

and the seasonal adjustments. 
•	 First, the least squares trend equation is determined, then the trend values for future periods are 

projected, and finally these values are adjusted for seasonal effects. 

10.5	Ti me Series Smoothing and Forecasting
•	 When the overall long-term trend movements in a time series is obscured by the amount 

of variation  from year to year, it becomes difficult to judge whether any long-term upward or 
downward trend effect really exists in the series. 

•	 Method of moving-average and method of exponential smoothing may be used to smooth a series 
and provide us with an overall impression of the pattern of movement in the data over time.

10.5.1	 Moving-Average Method 
•	 Moving-average method for smoothing a time series is highly subjective and dependent on the 

length of the period selected for constructing the averages. 
•	 The period should be an integer that corresponds to the estimated average length of a cycle. 
•	 For example, a three–month moving average would be calculated by taking the most recent three 

months data, averaging them and using it as the forecast for the next month.

10.5.2	 Exponential Smoothing Method
•	 A very popular approach for smoothing a time series. 
•	 This method allocates exponentially decreasing weights to the observations. The weights are 

determined by smoothing parameters (at least one).
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•	 Exponential smoothing makes use of a smoothing constant, α. This is the percentage of the forecast 
affected by the most recent data point. 

•	 The basic equation of exponential smoothing is 
	 New forecast = α(latest data point) + (1 – α)(previous forecast).
•	 The basic equation for exponential smoothing model: 
	 Dt = sales (demand) in period t, Ft = forecast for period t, α = smoothing constant,
	 Ft+1 = forecast for period t+1 (knowing sales in period t); 
	 Ft+1 = αDt + (1 – α)Ft
•	 Exponential Smoothing with Linear Trend:

¤	 Basic exponential smoothing will always lag behind any systematic increase or decrease in 
data.

¤	 Gt = one-period trend estimate, then the basic exponential smoothing equation is modified to 
include the trend estimate as St = αDt + (1 – α)(St-1 + Gt-1). 

¤	 St is like an updated baseline forecast except that it doesn’t project forward the trend for the 
following period. 

¤	 A more convenient way to update the trend factor is to use exponential smoothing again, 
Gt = β(St – St-1) + (1 – β)Gt–1.

¤	 Gt-1 plays a role similar to the previous value of the forecast in the basic equation; the latest 
value is represented by the difference between the last two baseline forecasts, St – St-1; a different 
smoothing constant β is used for some flexibility.   

¤	 Since there are two equations, this model is called a two-equation model with linear trend, or a 
two-equation model. 

¤	 The forecast for one period ahead is calculated as Ft+1 = St + Gt 
•	 Exponential Smoothing with Seasonal Factors:

¤	 In many situations, demand may follow a seasonal pattern. 
¤	 It is desirable to take advantage of this information in adjusting forecasts obtained by basic 

exponential smoothing or exponential smoothing with trend.
¤	 Seasonality is included by defining individual seasonal factors for each season. For monthly 

data, there are 12 seasonal factors C1 to C12. 
¤	 The seasonal factor for a season equals the average values for that period divided by the overall 

average. 
¤	 Seasonal factors Ci are included in St equation: St = α(Dt/Ct–N) + (1 – α)(St-1+ Gt–1) 
¤	 The seasonal factors are updated as new data becomes available. 
¤	 For trend term, we again use exponential smoothing: Ct = γ(Dt/St) + (1 – γ)Ct–N 
¤	 γ  is a different smoothing constant for updating the seasonal factors. 
¤	 Ft+1 equation becomes  Ft+1 = (St + Gt)Ct+1–N 

10.5.3	 Model Initialization and Smoothing Constant Values
•	 A variety of ways to take past data and initialize an exponential smoothing model. 
•	 One suggested procedure is to simply run through the data twice, use averages over the entire set 

of data to obtain average per period, average trend, and average seasonal factors, and go back to 
the first data point and use the equations to bootstrap forward just as you would if the data became 
available.

•	 To do this, you would need at least two and preferably three seasonal cycles to get good estimates 
of the seasonal factors.   

•	 α and β generally are set between 0.10 and 0.30; the larger the value of the smoothing constant, the 
more responsive the forecast to recent changes in the data. 

•	 However, sometimes the respond will simply be a response to random changes from month to 
month; for this reason, the α and β are kept ≤ 0.30. 
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•	 Seasonal smoothing factor γ often have a higher value, perhaps 0.20 to as high as 0.60, since each 
seasonal factor is updated only once in a complete seasonal cycle.

10.5.4	 Forecast Error Measurement 
•	 Since forecasts are ‘always wrong’, we need to analyze forecast error in order to make optimal 

decisions.   
•	 Forecast error is defined as: Error = Forecast – Actual, or et = Ft – Dt
•	 Mean Squared Error (MSE) involves taking each error, squaring it, and taking the average. 
•	 Mean Absolute Deviation (MAD) takes the absolute value of each error and average them. 
•	 Mean Absolute Percentage Error (MAPE) takes the absolute percentage of each error and averages 

them. 

10.5.5	 New Product Forecasting
•	 For new products, there is generally no past data. In such cases, companies often analyze data from 

similar products. 
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CHAPTER

Index Numbers11
Learning Objectives
The study of this chapter should enable you to:
❖	Define uses and various types of index numbers
❖	Describe and calculate simple index number
❖	Describe and calculate unweighted indexes
❖	Describe and calculate weighted indexes

Key Teaching Points
11.1	 Introduction
•	 Index numbers—the most widely used indicators in statistics. 
•	 Commonly used as ‘barometers’ to indicate the states of the economic activities. 
•	 Consumer Price Index (CPI) and other business indexes are published on a regular basis.
•	 CPI measures the changes in the price level of consumer goods and services. 
•	 Why do we need an index? To reflect changes in a group of items (price or quantity). 
•	 Easier to evaluate the trend in a time series composed of large numbers using index.  
•	 ‘Index number’ is a measure aimed to illustrate changes in a variable or a group of variables. 
•	 Three types of principal indexes; price index, quantity index and value index. 
•	 A price index compares changes in prices, a quantity index determines the changes in quantities, 

and a value index measures the combined changes of both. 
•	 Two popular approaches; aggregates method and average of relative method. 
•	 The index computed in either method could be unweighted or weighted index. 
•	 An unweighted index considers equal weights, and a weighted index assigns weights according to 

the values of items.

11.2	C haracteristics and Uses of an Index Number 
•	 The characteristics of an index number:

¤	 A percentage computed as a ratio of the current value to a base value (100). 
¤	 Specialized averages for comparison of items that are stated in different units. 
¤	 Measures changes that cannot be computed directly. 

•	 The uses of index numbers:
¤	 Establish trends to reveal a general movement of the event. 
¤	 Guide policy making. The CPI, for instance, is widely used as the basis to decide the wages of 

the employees from time to time. 
¤	 Conclude the purchasing power of a currency
¤	 Deflate time series data to reflect reality.
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11.3	B ase Period and Base Number 
•	 Each index has a base. The base period for most indexes was 1967 (1967 = 100). 
•	 Now, indexes have various base periods. The Malaysia CPI is currently 1994 = 100. 
•	 Base number of most indexes is 100; no reason why other numbers cannot be used. 

11.4	Si mple Index Number and Value Index
•	 Simple index number (the ratio of two values of the variable converted to a percentage) is used to 

evaluate the relative change in one variable. 
•	 The most important use of an index in business and economic is to demonstrate the change in 

percentage of one or more items from one period to another.
•	 A value index is the ratio of the value of all items in a given period to the value of all items in the 

base period; it measures the combined changes of price and quantity.

11.5	U nweighted Index 
•	 An index where equal weights are implicitly assigned to all items in a group. 
•	 Three methods; relative method, average of relative method and aggregate method.

11.5.1	 Unweighted Price Index
•	 Doesn’t reflect the reality since the price changes are not linked to any usage levels.
•	 The base-period price is p0, and a price other than the base period is p1.
•	 Relative price index measures the change in price for a specific item.

		  Relative Price Index = 
p1
p0

 × 100

•	 Average of relative price index measures the overall performance of a certain price change. 

		  Average of Relative Price Index = 
∑ p1

p0
 × 100

k ; where k is the number of items.

•	 Aggregate price index determines the price change of a group of similar items; items taken into 
consideration have to be in the same unit. 

		  Aggregate Price Index = 
∑p1
∑p0

 × 100

11.5.2	 Unweighted Quantity Index
•	 Relative quantity index measures changes in terms of quantity for a specific item.

		  Relative Quantity Index = 
q1
q0

 × 100

•	 Average of relative quantity index measures the overall performance of a certain quantity change.

		  Average of Relative Quantity Index = 
∑ q1

q0
 × 100

k ; where k is the number of items.

•	 Aggregate quantity index measures the quantity change of a group of similar items; the items have 
to be in the same unit.

		  Aggregate Quantity index = 
∑q1
∑q0

 × 100
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11.6	W eighted Index
•	 A major disadvantage of unweighted is all items are assumed of equal importance. 
•	 A substantial price change for slow moving items can completely distort an index. 
•	 There are three methods of computing a weighted index; Laspeyres, Paasche and fixed-weight 

aggregate methods. 
•	 The methods differ only with respect to the period used for weighting. 
•	 Laspeyres uses base-year weights, Paasche uses current-year weights, and fixed-weight aggregate 

method chooses one period other than base and current years.

11.6.1	 Weighted Price Index
•	 The base-period price is p0, and the selected period price is p1.
•	 Laspeyres price index determines a weighted price index using base-period quantities as weights.

		  Laspeyres Price Index = 
∑p1q0
∑p0q0

 × 100

•	 Paasche price index determines a weighted price index using current-period quantities as 
weights. 

		  Paasche Price Index = 
∑p1q1
∑p0q1

 × 100

•	 Paasche price index is preferable because it takes into account the change in price and consumption 
patterns. 

•	 Fixed-weight aggregate price index does not use quantities consumed in the current or base period; 
it uses weights from a representative period—fixed weights from a single or several years. 

		  Fixed-Weight Aggregate Price Index = 
∑p1q
∑p0q

 × 100

11.6.2	 Weighted Quantity Index 
•	 The base-period quantity is q0, and the selected period quantity is q1.
•	 Laspeyres quantity index determines a weighted quantity index using base-period prices as 

weights. 

		  Laspeyres Quantity Index = 
∑p1q0
∑p0q0

 × 100

•	 Paasche quantity index determines a weighted quantity index using current-year prices as 
weights. 

		  Paasche Quantity Index = 
∑q1p1
∑q0p1

 × 100

•	 Fixed-weight aggregate quantity index does not use prices in the current or base period; it uses 
fixed weights from a representative period—a single or several years. 

		  Fixed-Weight Aggregate Quantity Index = 
∑q1p
∑q0p

 × 100
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CHAPTER

1 Introduction to 
Statistics

	 1	 Differentiate between descriptive and inferential statistics.
		  Descriptive statistics just explains the sample data, whereas inferential statistics tries to reach 

conclusions that go beyond the existing data.

	 2	 Explain the differences between primary and secondary data.
		  Primary data is the specific information collected by the person who is doing the research, 

whereas secondary data is any material that has been collected from published records 
(newspapers, journals, research papers, etc).

	 3	 Define the following terms:
(a)	 Secondary data
		  Data that have been already collected by and readily available from other sources.
(b)	 Census
		  The procedure of systematically acquiring and recording information about the members of 

a given population.
(c)	 Inferential statistics
		  To apply the conclusions obtained from one experimental study to more general 

populations.  
(d)	 Quantitative data
		  Data measured or identified on a numerical scale.

	 4	 For each of the following, identify whether the descriptive or inferential statistics have been 
used.
(a)	 In general, men die earlier than women.
		  Inferential statistics
(b)	 A researcher has concluded that the property values will increase.
		  Inferential statistics
(c) 	In Malaysia, it is found that 45% of school children are obese in which 60% are males.
		  Descriptive statistics
(d) 	A study based on a random sample has revealed that the school children are obese because 

they always preferred fast foods.
		  Inferential statistics

	 5	 Determine whether each of the following statements is TRUE or FALSE.
(a) 	If a researcher uses descriptive statistics, the researcher will be able to conclude about the 

population based on a sample. FALSE
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(b)	 Probability is the basis of the inferential statistics. TRUE
(c)	 Marital status is an example of a qualitative data. TRUE
(d) 	The highest level of measurement is the ratio level. TRUE
(e)	 The examination grades (A to F) are an example of ordinal scale measurement. FALSE
(f) 	 Phone survey is the most expensive method of data collection. FALSE

	 6	 Identify the type of measurements (nominal, ordinal, interval and ratio) for each of the 
following:
(a) 	Test grades. Interval
(b)	 Size of shoe. Ordinal
(c) 	Type of blood. Nominal
(d)	 Weight of chicken in kg. Ratio
(e)	 The top five supermodels. Ordinal
(f) 	 Rating given to the cleanliness of restaurants. Interval
(g)	 The times recorded by the runners in a 100-metres sprint. Ratio
(h) 	The ranking of the top 10 Malaysia’s richest people for 2010. Ordinal
(i) 	 The positions in a soccer team such as striker and goalkeeper. Ordinal
(j) 	 The average day temperature recorded at 14 cities in Malaysia. Interval
(k) 	The number of accidents on a highway during the New Year festival. Ratio
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Concepts of 
Probability2

	 1	 A coin is tossed twice. Find the
(a)	 Sample space
		  S = {HH, HT, TH, TT}

(b)	 Probability of getting both heads
		  P(both heads) = 1/4

	 2	 In a dice tossing experiment, two events are defined as follows:
		  A = {an odd number};	 B = {a number less than 4}.
		  List the elements of 

(a)	 A or B
		  A  B = {1, 2, 3, 5}

(b)	 A and B
		  A  B = {1, 3}

(c)	 A or B.
		  A  B = {2, 4, 5, 6} 

	 3	 Ten chairs of different colours are to be arranged in a circle. Determine the number of 
possible different arrangements.

		  Circular permutation: (n–1)! The number of different arrangements (in a circle) of ten chairs of 
different colours = (10–1)! = 362 880 

	 4	 Using nine numbers 0, 1, 2, 3, 4, 5, 6, 7 and 8, answer the following:
(a)	 How many 5-digit numbers can be formed if repetition is not allowed?

		  9P5= 9!
(9 – 5)!

 = 9!/4! = 362 880/24 = 15 120

(b) 	How many 5-digit numbers greater than 5 000 can be formed if repetition is allowed?
		  The number of 5-digit numbers with repetition = 95 = 59 049
		  5-digit numbers greater than 5 000 = 59 049 – 5 001 = 54 048
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	 5	 Given that P(A) = 0.65, P(B) = 0.36 and P(A  B) = 0.234. Show whether
(a) 	events A and B are mutually exclusive
		  Since P(A  B) ≠ 0, A and B are not mutually exclusive.

(b) 	events A and B are independent
		  P(A) × P(B) = 0.65 × 0.36 = 0.234 = P(A  B), hence A and B are independent.

	 6	 Consider two events G and B with the following probabilities:
		  P(G) = 0.64, P(B) = 0.33 and P(G  B) = 0.84

(a) 	Determine the probability of ‘not G and not B’.
		  P(G  B) = 1 – P(G  B) = 1 – 0.84 = 0.16

(b)	 Describe whether the two events are independent.
		  P(G  B) = P(G) + P(B) – P(G  B) = 0.64 + 0.33 – 0.84 = 0.13
		  P(G) × P(B) = 0.64 × 0.33 = 0.2112 ≠ P(G  B), hence the events are not independent.

	 7	 A restaurant offers a lunch set at $9.50 that consists of one main course, one dessert and one 
drink which can be selected from the menu below:

		  Main course: Fried Rice, Fried Noodles and Porridge
		  Dessert: Cake, Pudding, Pie and Ice cream
		  Drink: Coffee, Tea, Juices, Soft drinks and Mineral water

(a)	 How many different sets of lunches are possible?
		  No. of possible different sets of lunches = 3 × 4 × 5 = 60

(b)	 What is the probability if a customer chooses tea as the drink?
		  P(a customer chooses tea) = 1/5 = 0.2

	 8	 If a person is infected with dengue, a test will show a positive result with a probability of 
0.65. However, if the person is not infected, the probability of a positive result is 0.08. It is 
estimated that 5% of the population is infected with dengue.
(a)	 Construct a tree diagram to illustrate the above problem.

 

  

  

  

 

Infected

positive

positive

0.05

0.65

0.08

0.95

0.92

0.35

Not infected

negative

negative

(b) 	What is the probability that a person infected with dengue is tested negative?
		  P(negative given infected) = 0.35
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	 9	 An auto parts manufacturing company produces two types of car shock absorbers, 60% for 
front wheels and 40% for rear wheels. The finished shock absorbers are stored in one area. A 
shock absorber is randomly selected, and it is known that 4% of the front absorbers and 3% 
of the rear absorbers are defective. 
(a) 	Construct a tree diagram to represent the problem.

 

  

  

  

 

Front

Defective

Defective

0.6

0.04

0.03

0.4

0.97

0.96

Rear

Not defective

Not defective

(b) 	What is the probability of getting a defective shock absorber?
		  P(defective)	= P(defective/front) × P(front) + P(defective/rear) × P(rear) 
			   = (0.04 × 0.6) + (0.03 × 0.4) = 0.24 + 0.12 = 0.36

(c) 	If a shock absorber was inspected and found defective, what is the probability that it is a front 
wheel absorber?

		  P(front given defective) = P(front and defective)/P(defective) = 0.24/0.36 = 2/3

	10	 A lecturer noticed that 20% of his students are males, while the rest are females. The 
probability that a male student obtained grade A in a final exam is 30%, while the probability 
that a female student obtained grade A in the exam is 40%.
(a) 	Illustrate the above problem using a tree diagram.

 

  

  

  

 

Male

A

A

0.2

0.3

0.4

0.8

0.6

0.7

Female

Others

Others

(b) 	Compute the probability that a particular student obtained grade A.
		  P(grade A)	= P(A/male) × P(male) + P(A/female) × P(female) 
			   = (0.3 × 0.2) + (0.4 × 0.8) = 0.06 + 0.32 = 0.38

(c)	 If a student failed to obtain grade A, what is the probability that the student was a female?
		  P(female/other grades) = P(female & other grades)/P(other grades) = 0.6 × 0.8/0.62 = 0.77
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	11	 A study conducted by the Department of Road Safety has revealed that 70% of car drivers 
wear seat belts. The study also showed that 80% of driver deaths in serious road accidents 
were caused by not wearing the seat belts, while for those who wear seat belts the percentage 
of deaths is only 20%. 
(a) 	Draw a tree diagram to represent the given situation.

 

  

  

  

 

Seat belt

Death

Death

0.7

0.2

0.8

0.3

0.2

0.8

No seat belt

Others

Others

(b) 	What is the probability that a car driver died in a serious road accident?
		  P(death)	 = P(death/seat belt) × P(seat belt) + P(death/no seat belt) × P(no seat belt)
			   = (0.2 × 0.7) + (0.8 × 0.3) = 0.14 + 0.24 = 0.38 

(c) 	If a car driver had died in a serious road accident, calculate the probability that the driver was 
not wearing the seat belt.

		  P(no seat belt/death) = P(no seat belt & death)/P(death) = 0.24/0.38 = 0.63

	12	 The manager of an electronic component manufacturer is concerned about the number of 
defects during each production shift. There are three shifts; morning, evening and night. 
Based on the past data, it was found that 35% of the components were produced during 
the morning shift, 35% during the evening shift and 30% during the night shift. It was also 
established that the percentages of the number of defective components produced during the 
three shifts are respectively 6%, 8% and 10%.
(a) 	Construct a tree diagram showing all the events in the problem.

Morning

Defective

Defective

Defective

0.35

0.06

0.08

0.10

0.35

0.30

Evening

0.94

0.92

0.90

Night

Not defective

Not defective

Not defective

(b) 	Suppose a component randomly selected by the manager was defective. What is the probability 
that the component was produced during the evening shift?

		  P(evening given defective) = P(evening and defective)/P(defective)
		  P(evening and defective) = P(defective/evening) × P(evening) = 0.08 × 0.35 = 0.028
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		  P(defective)	 = P(morning and defective) + P(evening and defective) + P(night and defective)
			   = (0.06 × 0.35) + (0.028) + (0.10 × 0.30) = 0.021 + 0.028 + 0.03 = 0.079
		  P(evening given defective) = 0.028/0.079 = 0.354

	13	 A logistics firm requires additional trucks to meet increasing demand. The operations manager 
has decided to hire 40% of the trucks from company A and 60% from company B. It is known 
that 5% of the trucks from company A and 3% from company B are having engine problems.
(a) 	Draw an appropriate tree diagram to illustrate the above problem.

 

  

  

  

 

A

problems

problems

0.4

0.05

0.03

0.6

0.97

0.95

B

ok

ok

(b) 	Calculate the probability that the firm will get a truck with a bad engine.
		  P(bad engine)	 = P(problems & A) + P(problems & B)
			   = (0.05 × 0.4) + (0.03 × 0.6) = 0.02 + 0.018 = 0.038

(c) 	If a truck hired by the firm has a good engine, calculate the probability that it came from 
company B.

		  P(B given good engine) = P(B and OK)/P(OK) 
		  P(B and OK) = P(OK/B) × P(B) = 0.97 × 0.6 = 0.582
		  P(OK) = P(A and OK) + P(B and OK) = (0.95 × 0.4) + 0.582 = 0.38 + 0.582 = 0.962
		  P(B given good engine) = 0.582/0.962 = 0.605

	14	 A faculty has three departments; Statistics, Actuarial Science and Operations Research. Each 
department consists of tutors, lecturers and senior lecturers, as shown in the table below.

Statistics Actuarial 
Science

Operations 
Research

Tutor 10 5 7
Lecturer 7 3 5
Senior Lecturer 3 2 3

		  Six persons must be selected at random for a short course.

(a) 	Find the number of ways that at least two from Operations Research were chosen.
		  Consider a binomial random variable with p = P(OR) = 15/45 = 1/3
		  P(X ≥ 2)	 = 1 – P(X ≤ 1) = 1 – P(X = 0) – P(X = 1)
			   = 1 – (1/3)0(2/3)6 + 6(1/3)1(2/3)5 = 1 – 0.088 – 0.263 = 0.649

(b) 	Find the probability that two senior lecturers were chosen.
		  Consider a binomial random variable with p = P(Senior) = 8/45 = 0.1777778
		  P(X = 2) = 60(8/45)2(37/45)4 = 0.867
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	15	 The employees of an accounting firm were classified according to their levels of education 
and gender, as summarized in the table below.

Gender
Level of Education

College Certificate Diploma First Degree Master Degree
Male 5 7 2 1

Female 8 10 5 2

(a)	 Find the probability that a randomly selected employee is a female with diploma.
		  P(female with diploma) = 10/40 = 1/4 = 0.25

(b)	 It is known that the employee is a male, find the probability that he has only a college 
certificate.

		  P(college certificate/male)	 = P(college certificate and male)/P(male)
			   = (5/40)/(15/40) = 5/15 = 1/3
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CHAPTER Sampling Methods 
and Sampling 
Distribution3

	 1	 Determine the sampling technique used in each of the following:
(a) 	A survey on dengue is to be conducted in Shah Alam. The population is divided into 

medium-income and high-income areas. A random sample that is selected will represent 
10% of the population.

		  Stratified Random Sampling

(b) 	A random sample of a particular product is obtained by selecting every 50th item from an 
assembly line.

		  Systematic Random Sampling

	 2	 Determine whether each of the following statements is TRUE or FALSE:
(a) 	In cluster sampling, the characteristic of the population units in the same group is 

heterogeneous. TRUE
(b) 	Simple random sampling is based on non-probability concept. FALSE
(c) 	Snowball sampling requires a sampling frame. FALSE
(d) 	In stratified sampling, one of the demerits is that this sampling technique is not totally 

random. TRUE
(e) 	The variable religion is an example of a qualitative variable. TRUE
(f) 	 The weight is considered as a continuous variable. TRUE
(g) 	One advantage of the median is that it is unique. TRUE
(h) 	An outlier is an extremely high or an extremely low data value when compared with the rest 

of the data. TRUE

	 3	 A lecturer wishes to study the examination results of students from the Faculty of Computer 
Science which consists of 30 classes. He intends to choose only eight classes and all the 
students from these eight classes will be selected.
(a) 	State the population for this study.
		  Examination results of all students in 30 classes from the Faculty of Computer Science 

(b) 	State the variable and its type for this study.
		  Examination result – discrete variable

(c)	 State the sampling technique used for this study.
		  Cluster random sampling
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	 4	 A researcher is interested in the cumulative grade point averages (CGPA) of the students who 
enrolled in three different Master programs; namely M701, M702 and M703. 
(a) 	State the population and variable of interest.
		  Population: CGPAs of all students in three different programs 
		  Variable: CGPA (continuous variable)

(b) 	Determine the sampling frame.
		  A random sample will be selected from the population (CGPAs of students in three different 

Master programs).

(c) 	Describe an appropriate sampling technique that should be used for this study and give two 
reasons for using this technique.

		  The appropriate sampling technique is stratified random sampling — consider the three 
programs as three homogeneous subgroups, and then take a simple random sample from 
each subgroup.

		  Reasons: 	 1) 	� The samples taken are not only representing the whole population but also 
the three subgroups, and 

			   2)	� The stratified random sampling generally has more statistical precisions 
compared to simple random sampling.

(d) 	Suppose the researcher has determined the CGPA of each student of those three programs. 
Would this represent a census or sample? Give your reason.

		  A census since the researcher has all the CGPAs of the population (three programs).

	 5	 Star Cruises, the Leading Cruise Line in Asia-Pacific, offers special rates to Malaysian senior 
citizens. The agency wishes to conduct a survey on the ages of this group of customers. A 
sample 150 senior citizens who took the offer is selected at random.
(a) 	Explain the population for this survey.
		  All senior citizens who took the offer

(b) 	State the sampling frame.
		  A random sample of 150 senior citizens is selected from the population of senior citizens 

who took the offer.

(c) 	Describe the variable of interest and state its type.
		  Age of senior citizen – discrete variable

(d) 	Identify the most appropriate sampling technique and describe how it should be carried out.
		  Use systematic random sampling method, randomly select 150 senior citizens who took the 

offer from the list; a random starting point is selected, and then every kth name in the list is 
selected for the sample.

(e) 	Give the best data collection technique for this survey and state the advantage(s) and 
disadvantage(s).

		  Run through the list and check the ages of the selected customers.
		  Advantage – faster and convenient 
		  Disadvantage – no information on age available or wrongly stated by customers
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	 6	 A researcher is conducting a simple survey to study the demographic characteristics of 
students at a public university. There are about 10 000 students at the university and a sample 
of 2 000 will be chosen as respondents.
(a)	 Describe the sampling frame for the survey.
		  A random sample of 2 000 will be selected from a population of 10 000 students at a public 

university.
(b)	 Define the type of variable (qualitative or quantitative) for each of the following demographic 

characteristics:
	 (i)	 Race. Qualitative
	 (ii)	 Academic program. Qualitative
	 (iii)	 Cumulative grade point average. Quantitative
	 (iv)	 Number of academic awards received. Quantitative

(c)	 State one possible probability sampling technique to choose the 2 000 students if the 
researcher manages to obtain all the students’ names from the university. Give one advantage 
of this technique.

		  Use systematic random sampling – it is faster and convenient 

(d)	 Explain how to select the sample using the sampling technique stated in (c).
		  The university has the names (and records) of all 10 000 students from which the researcher 

may randomly select 2 000 students; for instance, sort the student names, then starting at 
number 5 of the sorted list, select every 5th student to gather 2 000 student records.

	 7	 A general manager of a company selling air conditioners wishes to investigate the level of 
satisfaction among customers. He had asked his assistant to gather the information of 300 
customers who had recently bought air conditioners of various brands from the company, as 
shown in the table below. A random sample of 90 customers will be selected.

Brand of Air Conditioner Number of Customers
LG 30
Mitsubishi 60
Panasonic 90
Sharp 20
Toshiba 70
York 30

(a) 	State the population of interest.
		  The 300 customers who had recently bought air conditioners from the company

(b) 	Identify the variable of interest in the study.
		  Brand of air conditioner

(c) 	Describe the sampling method that should be used in the study.
		  Stratified random sampling – select 30% of customers for each brand

(d) 	Obtain the number of customers selected as samples for each brand.

Brand of Air Conditioner Number of Customers as Sample
LG 9
Mitsubishi 18
Panasonic 27

(contd.)
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Brand of Air Conditioner Number of Customers as Sample
Sharp 6
Toshiba 21
York 9
Total 90

(e) 	Explain how to select customers for the Panasonic brand using systematic sampling.
		  Systematic random sampling on Panasonic brand – using the list of customers who had 

recently bought Panasonic air conditioners, starting at customer number 3 (for instance), 
select every 3rd customer to gather 27 customers as a sample.

	 8	 In the IT industry, customer service is a crucial factor affecting computer sales. The 
management  of a computer company is interested to determine the level of customer 
satisfaction with the services provided by their service centres. The company has 50 
service centres in the Klang Valley area. A sample of 10 centres was selected at random. All 
customers who had purchased the computers at these 10 centres were selected for the study. 
A questionnaire was posted to each of these customers.
(a) 	Explain the objective of the study.
		  To determine the level of customer satisfaction with the services provided by the centres

(b) 	State the population for this study.
		  All customers who had purchased computers at 50 centres

(c) 	Describe the sampling technique used for this study and state one reason for using this 
technique.

		  Cluster random sampling – only 10 centres from 50 are randomly selected
		  Reason – to reduce the cost of sampling for a large geographic area

(d) 	Give two techniques that can be used to select the 10 centres. 
		  Simple random sampling and systematic random sampling

(e) 	Questionnaires were posted to the customers. One disadvantage of this approach is the poor 
response rate. Suggest how the company could increase the response rate.

		  The company could offer the customers a special discount or free service charges next time 
they come for services to increase the response rate.

	 9	 A large firm is considering implementing a new salary scheme and wishes to determine the 
proportion of employees that agree with the new policy. The firm has 20 branches located 
throughout Malaysia. A sample of five branches was selected and the opinions of all employees 
regarding the new scheme were obtained.
(a) 	Describe the population and the sample for the study.
		  All employees working with the firm at 20 branches

(b) 	Explain the sampling frame for the study.
		  Five branches randomly selected from 20 and all employees were sampled.

(c) 	What type of statistics was used in the study?
		  Inferential statistics – qualitative data 

(d) 	Identify the type of variable and the scale of measurement used in the study.
		  Opinion – qualitative variable – ordinal scale of measurement
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(e) 	Describe the sampling technique used in the study.
		  Cluster random sampling – five branches randomly selected from 20 and all employees were 

sampled

(f) 	 If systematic random sampling was employed to select five branches from 20, explain how it 
will be conducted.

		  Systematic random sampling – list (number) the 20 branches, starting from number 4, for 
instance, select every 4th branch (4th, 8th, 12th, 16th, 20th) 

(g) 	Determine the most appropriate data collection method to be used in the study, and give one 
advantage and one disadvantage of using this method.

		  Stratified random sampling (select all 20 branches), and take a simple random sample from 
each branch. 

		  Advantage – all branches are represented in the sample
		  Disadvantage – cost and time consuming to sample all branches

	10	 A cable TV company has established a new online customer support service to help the 
customers on any matter related to the company’s products. The company wants to investigate 
the effectiveness of the new customer support service by selecting a sample of 1000 customers 
using the information available from the database. The categories of products and the 
percentage of customers subscribing each category are summarized as follows:

Category of Products Percentage of Customers (%)
All Products 50
Movies/Sports/News 30
Movies/News 10
Sports/News 10

(a) 	State the population of interest for this study.
		  All customers available in the database.

(b) 	Describe the sampling frame.
		  Sample 1 000 customers using the database based on the percentage of customers subscribing 

each category of products.

(c) 	State the variable to be measured.
		  The effectiveness of the new customer support service – qualitative variable

(d) 	Recommend an appropriate sampling technique to be used in this study, and describe how it 
should be carried out.

		  Proportional stratified random sampling – randomly select a number of customers based on 
the specified percentage from each category to gather 1 000 (500, 300, 100, 100)

(e)	 State a suitable data collection method for this study, and give one advantage and one 
disadvantage.

		  Call all selected 1 000 customers – convenient but time consuming 
		  Send questionnaire by email – cost saving but low response rate
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	 1	 Which of the following random variables are discrete and which are continuous?
(a) 	The wages of workers in a manufacturing firm.
		  Continuous
(b) 	The time taken to complete a task.
		  Continuous 
(c) 	The prices of mobile phones displayed at a phone shop.
		  Discrete 
(d) 	The number of pumps at a petrol station.
		  Discrete 

	 2	 Data was collected over 100 days tabulating the number of room service calls in a budget 
hotel.

x 30 31 32 33 34 35 36 37 38 39

Frequency 5 6 9 12 15 16 14 12 8 3

P(x)

(a)	 Use the relative frequency to calculate P(x). What does each P(x) represent?

x Frequency P(x)

30 5 0.05
31 6 0.06
32 9 0.09
33 12 0.12
34 15 0.15
35 16 0.16
36 14 0.14
37 12 0.12
38 8 0.08
39 3 0.03

Total 100 1.00

		  P(x) is the probability distribution for a random variable X (the number of room service 
calls in a budget hotel per day)
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(b)	 Graph the probability distribution.

P(x)
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

0
30 31 32 33 34 35 36 37 38 39

(c)	 Find the mean and variance of the number of calls.

x P(x) x·P(x) (x – µ)2·P(x)
30 0.05 1.50 1.053405
31 0.06 1.86 0.773286
32 0.09 2.88 0.603729
33 0.12 3.96 0.303372
34 0.15 5.10 0.052215
35 0.16 5.60 0.026896
36 0.14 5.04 0.278334
37 0.12 4.44 0.696972
38 0.08 3.04 0.930248
39 0.03 1.17 0.583443

Total 1.00 34.59 5.3019

		  Mean = E(X) = ∑
x  

x·P(x)= 34.59 calls per day
		  Variance = V(X) = E[(X – µ)2] =  ∑

x  
(x – µ)2 P(x) = 5.3019 

	 3	 Let X be a random variable with the following probability distribution. Determine E(X), 
E(X2) and V(X).

x P(x)
1 0.1
2 0.2
3 0.3
4 0.3
5 0.1

x P(x) x·P(x) x2·P(x) (x – µ)2·P(x)
1 0.1 0.1 0.1 0.441
2 0.2 0.4 0.8 0.242
3 0.3 0.9 2.7 0.003
4 0.3 1.2 4.8 0.243
5 0.1 0.5 2.5 0.361

Total 1.0 3.1 10.9 1.29
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		  E(X) = ∑
x  

x·P(x) = 3.1

		  E(X)2 = ∑
x  

x2·P(x) = 10.9

		  V(X) =  ∑
x  (x – µ)2 P(x)= 1.29

	 4	 Three coins are flipped at once, and let X be the number of tails. Find the expected value and 
the variance of X. 

x P(x) x·P(x) (x – µ)2·P(x)

0 (0.5)3= 0.125 0 0.28125
1 3(0.5)3= 0.375 0.375 0.09375
2 3(0.5)3= 0.375 0.75 0.09375
3 (0.5)3= 0.125 0.375 0.28125

Total 1.00 1.5 0.75

		  Mean = E(X) = ∑
x  

x·P(x) = 1.5 tails

		  Variance = V(X) =  ∑
x  (x – µ)2 P(x) = 0.75 tails 

	 5	 A particular product from an assembly line is known to have 5% defects. For a quality control 
process, 10 units are randomly selected from each production run. Let X denote the number of 
defectives among the 10 selected. 
(a)	 Find the expected number of defectives and the standard deviation.
		  X is a binomial random variable with p = 0.05 and n = 10
		  Expected number of defectives = µ = E(X) = np = (10)(0.05) = 0.5
		  Standard deviation = σ =√np (1 – p)  = √0.5(0.95)  = 0.475

(b)	 If it costs $15 to repair one defective product, calculate the expected repair cost every time a 
sample of 10 units is selected.

		  The expected repair cost every time a sample of 10 units is selected = 0.5(15) = $7.50

	 6	 A warehouse manager has established the following probability distribution for the daily 
shortage of a particular item.

y 0 1 2 3 4 5

P(y) 0.10 0.30 0.35 0.10 0.10 0.05

		  The penalty cost incurred per unit shortage is fixed at $25. Calculate the mean and variance 
of the daily shortage cost of the item.

y P(y) y·P(y) (y – µ)2·P(y)

0 0.10 0 0.38025
1 0.30 0.3 0.27075
2 0.35 0.7 0.000875
3 0.10 0.3 0.11025
4 0.10 0.4 0.42025
5 0.05 0.25 0.465125

Total 1.00 1.95 1.6475
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		  E(Y) = ∑
y  

y·P(y) = 1.95 units. The mean of the shortage cost =1.95 × 25= $48.75

		   V(Y) =  ∑
y  (y – µ)2 P(y) = 1.6475 units. 

		  The variance of the shortage cost =1.6475 × 25= $41.1875
 
	 7	 The proportion of time, X, that a manufacturing machine is in operation during an 8-hour 

shift is a random variable with the following density function.

		  f(x) =	 	3x2, 0 ≤ x ≤ 1
				      0, elsewhere

(a)	 Calculate the expected value E(X) and the variance V(X).

		  E(X) = ∫
1

0
x·f(x)dx = ∫

1

0
3x3dx = 3

4
x4 

1 
0
 = 3/4 = 0.75

		  V(X) = E(X2) – µ2; E(X2) =∫
1

0
x2·f(x)dx = ∫

1

0
3x4dx = 3

5
x5  

1 
0
  = 3/5

		  Hence, V(X) = 3/5 – (3/4)2 = 0.0375

(b)	 For the machine under study, the profit per shift is given by Y = 100X – 8. Calculate E(Y) and 
V(Y).

		  E(Y) = E(100X – 8) = 100E(X) – 8 = 100(0.75) – 8 = 67
		  V(Y) = V(100X – 8) = 1002V(X) = 1002(0.0375) = 375

	 8	 The proportion of time per day that a doctor at a clinic is busy is a random variable X with 
density function

	 	 f(x) =	 	x(ax2 – 1), 0 ≤ x ≤ 1
				            0, elsewhere

(a)	 Find the value of a that makes f(x) a probability density function.

		  ∫
1

0
x(ax – 1)dx = ∫

1

0
(ax2 – x)dx = ( 1

3
ax3 – 1

2
x2)  

1 
0
  = a/3 – 0.5

		  For a probability density function, a/3 – 0.5 = 1, hence a = 4.5

(b)	 Calculate E(X) and V(X).	

		  E(X) = ∫
1

0
x · x(4.5x – 1)dx = ∫

1

0
(4.5x3 – x2)dx = (4.5

4
x4 – 1

3
x3)  

1 
0
  = 4.5/4 – 1/3 = 0.7917

		  V(X) = E(X2) – µ2; E(X2)	 = ∫
1

0
x2 · x(4.5x – 1)dx = ∫

1

0
(4.5x4 – x3)dx =  (4.5

5
x5 – 1

4
x4)  

1 
0
  

			   = 4.5/5 – 1/4 = 0.65
		  Hence, V(X) = 0.65 – (0.7917)2 = 0.0232

(c)	 Find the probability that, on any particular day, the doctor is busy at least 65% of the time.

		  P(X ≥ 0.65)	= ∫
1

0.65
(4.5x2 – x)dx = (1.5x3 –  1

2
x2)  

1 
0.65

 

			   = (1.5 – 0.5) – (0.41194 – 0.21125) = 1 – 0.20069 = 0.799
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	 9	 For the coming semester, 50 new students will register at a college. The registrar of the college 
noted that each semester the rate of withdrawal has been 25%. Consider this problem as a 
binomial experiment.
(a) 	What are the two outcomes S and F?
		  S – a student withdraws from the college, F - a student remains at the college

(b) 	What are the values of n, p and q?
		  n = 50, p = 0.25, q = 0.75

(c)	 Compute the probability that in the coming semester 15 new students will withdraw from the 
college.

		  P(15 new students withdraw from the college) = b(15; 50, 0.25) 
		  Using Poisson Approximation to Binomial, µ = (50)(0.25) = 12.5
		  P(X = 15) = P(X ≤ 15) – P(X ≤ 14) = 0.806 – 0.725 = 0.081 (from Poisson tables)

	10	 A group of students consisting of 5 males and 10 females wish to select three representatives 
to attend a student conference. They do so by placing their names in a box and drawing three 
names.
(a)	 What is the probability that all three selected students are males?
		  Let X = no. of males; P(X = 3) = b(3; 15, 1/3) = 15C3 (1/3)3(2/3)12 = 0.13

(b)	 What is the probability that at least two females were selected?
		  Let Y = no. of females; P(Y ≥ 2)	= 1 – P(0) – P(1) = 1 – b(0; 15, 2/3) – b(1; 15, 2/3)
			   = 1 – (2/3)0(1/3)15 – 15(2/3)1(1/3)14

			   = 1 – 0.000002 = 0.999998 = 1

	11	 In an exam of 20 multiple-choice questions, each question is provided with five possible 
answers of which only one is correct. Suppose that you have no time to prepare for the exam, 
and you have no choice but to answer all questions by guessing. 
(a)	 What is the probability that you will answer all questions correctly?
		  P(all 20 answers are correct) = P(X = 20) = b(20; 20, 0.2) = (0.2)20(0.8)0 = 0.00

(b)	 What is the probability that you will get zero mark?
		  P(all 20 answers are incorrect) = P(X = 0) = b(0; 20, 0.2) = (0.2)0(0.8)20 = 0.01153

(c)	 What is the probability that you will pass the exam if the passing mark is 50%?
		  P(at least 10 answers are correct) = P(X ≥ 10) = 1 – P(X ≤ 9);
		  P(X ≤ 9) for b(x; 20, 0.2) from Binomial tables is 0.9974; 
		  hence P(X ≥ 10) = 1 – 0.9974 = 0.0026

	12	 Suppose an electric car requires at least three battery cells for its power. The probability that 
any one of these cells will fail is 0.10, and the cells operate and fail independently.
(a)	 Determine the minimum number of battery cells required so that the electric car can operate 

without failure.
		  P(the electric car operates without failure) = P(at least 3 battery cells operate)
		  = P(X ≥ 3) = 1 – P(X ≤ 2); we need to determine n such that P(X ≥ 3) = 1 or P(X ≤ 2) = 0
		  From Binomial tables, with p = 0.9, the first P(X ≤ 2) = 0.0000 occurs when n = 8.
		  Hence, the minimum number of battery cells required so that the electric car can operate 

without failure is 8.

(b)	 Find the minimum number of battery cells the car must have so that there is a 95% probability 
that it will be operational.
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		  P(the electric car operates without failure) = P(at least 3 battery cells operate) = 0.95
		  We need to determine n such that P(X ≥ 3) = 0.95 or P(X ≤ 2) = 0.05

		  From Binomial tables, with p = 0.9, P(X ≤ 2) = 0.0523 when n = 4 and P(X ≤ 2) = 0.0086 when 
n = 5. 

		  Hence, the minimum number of battery cells the car must have so that there is a 95% 
probability that it will be operational is 5.

	13	 The average number of cars sold by the Luxury Auto is three cars per day. 
(a)	 What is the probability that exactly four cars will be sold tomorrow?
		  No. of cars sold per day is a Poisson r.v. with µ = 3 
		  P(exactly four cars will be sold tomorrow) = e−µ∙µx/x! = e−3∙34/4! = 0.168

(b)	 What is the probability that at least three cars will be sold tomorrow? 
		  P(at least 3 cars will be sold tomorrow) = P(X ≥ 3) = 1 – P(X ≤ 2) 
		  From Poisson tables, with µ = 3, P(X ≤ 2) = 0.423, hence P(X ≥ 3) = 1 – 0.423 = 0.577

	14	 The number of road accidents recorded on a freeway possesses a Poisson distribution with an 
average of three accidents per week.
(a) 	What is the probability that there will be no accident in a particular week?
		  µ = 3; P(no accident per week) = P(X = 0) = e−3∙30/0! = 0.0498

(b) 	What is the probability that there will be at least three accidents in a particular week?
		  P(at least 3 accidents per week) = P(X ≥ 3) = 1 – P(X ≤ 2)
		  Same as in 13(b), P(X ≤ 2) = 0.423, hence P(X ≥ 3) = 1 – 0.423 = 0.577

(c) 	What is the probability that there will be exactly five accidents in a particular week?
		  P(exactly 5 accidents per week) = P(X = 5) = e−3∙35/5! = 0.100819

(d) 	Find the expected number of road accidents on the freeway per year if the weekly numbers 
of recorded accidents are independent.

		  Consider 52 weeks per year, let Y = 52X;
		  Since E(X) = 3, then E(Y) = 52∙E(X) = 52(3) = 156 per year

	15	 Each month the Immigration Department had arrested an average of 2 500 illegal immigrants. 
Assuming that the numbers of monthly arrests are independent, determine the following:
(a) 	The probability that less than 2 000 illegal immigrants will be arrested in a particular month.
		  Poisson with µ = 2 500; using normal approx. P(X < 2 000) = P(Z < (2 000 – 2 500)/2 500) 
		  = P(Z < –0.2) = P(Z > 0.2) = 0.4207

(b) 	The probability that at least 4 500 illegal immigrants will be arrested in a two month period.
		  P(X ≥ 4 500) = P(Z ≥ (4 500 – 2 500)/2 500) = P(Z ≥ 0.8) = 0.2119

(c) 	The probability that exactly 3 000 arrests are made in a particular month.
		  P(X = 3 000) = P(X ≤ 3000.5) – P(X ≤ 2999.5) = P(Z ≤ 0.2002) – P(Z ≤ 0.1998)
		  (using MS Excel) = 0.57934 – 0.57918 = 0.00616

	16	 Use the standard normal probability table to find the area under the standard normal curve 
between the following values. 
(a)	 z = 0 and z = 2.3 
		  P(0 < Z < 2.3) = P(Z > 0) – P(Z > 2.3) = 0.5 – 0.0107 = 0.4893
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(b)	 z = 0 and z = 1.68 
		  P(0 < Z < 1.68) = P(Z > 0) – P(Z > 1.68) = 0.5 – 0.0465 = 0.4535	
(c)	 z = 0.24 and z = 0.33 		
		  P(0.24 < Z < 0.33) = P(Z > 0.24) – P(Z > 0.33) = 0.4052 – 0.3707 = 0.0345	
(d)	 z = –2.575 and z = 0 
		  P(–2.575 <  Z < 0) = P(0 < Z < 2.575) = P(Z > 0) – P(Z > 2.575) = 0.5 – 0.005 = 0.495
(e)	 z = –2.81 and z = –1.35 	
		  P(–2.81< Z < –1.35) = P(1.35 < Z < 2.81) = P(Z > 1.35) – P(Z > 2.81) = 0.0885 – 0.0025 = 

0.086
(f)	 z = –1.73 and z = 0.49
		  P(–1.73 < Z < 0.49) = P(0 < Z < 1.73) + P(0 < Z < 0.49) = 0.5 – P(Z > 1.73) + 0.5 – P(Z > 0.49) 

= 1 – 0.0418 – 0.3121 = 0.6461

	17	 Use the standard normal probability table to find the value of z for each of the following. 
(a)	 P(0 ≤ Z ≤ z) = 0.41	 or P(Z > z) = 0.09, hence z = 2.365
(b)	 P(Z ≥ z) = 0.25 	 hence z = 0.6745
(c)	 P(Z ≤ z) = 0.95 	 or P(Z > z) = 0.05, hence z = 1.645
(d)	 P(–z ≤ Z ≤ z) = 0.88	 or P(Z > z) = 0.06, hence z = 1.555

	18	 If X is a normal random variable with a mean of 50 and a standard deviation of 8, how many 
standard deviations away from the mean is each of the following values of X? 
(a)	 x = 52	 |52 – 50|/8 = 0.25 standard deviation
(b)	 x = 35 	 |35 – 50|/8 = 1.875 standard deviation
(c)	 x = 64 	 |64 – 50|/8 = 1.75 standard deviation
(d)	 x = 37	 |37 – 50|/8 = 1.625 standard deviation

	19	 An average tire used by a transportation company lasts 20 000 km with a standard deviation of 
100 km. Assuming that the distance of the tire is normally distributed, what is the probability 
that a tire used by the company will last at most 30 000 km?

		  P(X ≤ 30 000) = P(Z ≤ [30 000 – 20 000]/100) = P(Z ≤ 100) = 1.00

	20	 Suppose scores on an examination are normally distributed. If the examination has a mean 
of 60% and a standard deviation of 15%, what is the probability that a student who takes the 
examination will score between 80% and 90%? 

		  P(80 ≤ X ≤ 90)	 = P([80 – 60]/15 ≤ Z ≤ [90 – 60]/15) = P(1.333 ≤ Z ≤ 2) 
			   = P(Z > 1.333) – P(Z > 2) = 0.0913 – 0.0228 = 0.0685

	21	 A medical expert wants to study the effectiveness of a pain killer that has been used for many 
years. He found that the percentage of effectiveness of the drug is normally distributed with a 
standard deviation of 5%. Suppose he takes a sample of 15 patients who had taken the drug, 
find the probability that the sample mean percentage will be within 3% of the population 
mean.

		  P(sample mean percentage within 3% of population mean) 

		  = P(|x– – µ | ≤ 3)	= P(|z| ≤ 3
5/√15 ) = P(|z| ≤ 2.324) = P(–2.324 ≤ z ≤ 2.324)

			   = 1 – 2P(z > 2.324) = 1 – 2(0.0101) = 0.9798
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	 1	 Construct a stem and leaf chart for the following data:

74 94 25 45 65 12 86 23 83 10
72 26 62 87 18 49 47 64 93 59

1
2

4
5
6
7
8
9

0
3

5
9
2
2
3
3

2
5

7

4
4
6
4

8
6

9

5

7

	 2	 Thirty students attending a seminar were asked to choose one of three choices of beverages 
they preferred, and the results were summarized as follows:

Beverage Male Female

Tea 3 7

Coffee 7 4

Juice 4 5

		  Illustrate the above data using a multiple bar chart and briefly comment on the chart.
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8

7

6

5

4

3

2

1

0

Tea Coffee Juice

Male

Female

		  The number of females who preferred tea is twice that of males.
		  The number of males who preferred coffee is twice that of females.
		  The numbers of males and females who preferred juice are about the same.

	 3	 Draw an appropriate bar chart to present the following information:

		  Average Monthly Salary of Operations Manager ($)

Sex Service Sectors Manufacturing Banking Sectors

Male 3 600 4 500 3 900

Female 3 400 4 200 3 700

Male

Female

4 000

4 500

5 000

3 500

3 000

2 500

2 000

1 500

1 000

500

0

Service Sectors Manufacturing Banking Sectors

	 4	 The following table shows the number of students registered for MSc Quantitative Science 
in three different specializations. Construct a pie chart showing the percentage of each 
specialization.
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Specialization Number of Students

Operations Management
Financial Engineering
Quantitative Economics

25
15
10

Number of Students in Three Different 
Specializations

Operations 
Management 

50%

Quantitative 
Economics 

20%

Financial 
Engineering

30%

	 5	 The average number of hours spent on a computer per day by nine computer programmers 
are given below:

8 7 9 6 7 10 11 9 12

		  Calculate the mean, median and mode.

		  Mean = (8 + 7 + 9 + 6 + 7 + 10 + 11 + 9 + 12)/9 = 8.778
		  Median = 9
		  Mode = 7 and 9

	 6	 For ten consecutive weeks, a bank manager recorded the number of clients at the bank as 
follows:

212 210 208 216 205 210 213 207 209 220

(a)	 Compute the measures of central tendency (mean, median and mode).
		  Mean = (212 + 210 + 208 + 216 + 205 + 210 + 213 + 207 + 209 + 220)/10 = 211
		  Median = 210
		  Mode = 210

(b)	 From (a), describe the shape of the distribution.
		  Since the three measures are almost the same, the shape of distribution is nearly 

symmetrical.

	 7	 1Malaysia Store has 15 outlets throughout Malaysia. The monthly sales ($000) generated by 
the outlets during a festive season were as follows:

14.3 51.1 21.2 32.7 22.8 21.1 51.4 61.3
32.3  71.3 41.5 14.5 55.6 47.8 63.5

Find the mean, median and mode for the above data, and hence describe the distribution.
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		  Mean	 = �(14.3 + 51.1 + 21.2 + 32.7 + 22.8 + 21.1 + 51.4 + 61.3 + 32.3 + 71.3 + 41.5 + 14.5 + 55.6 
+ 47.8 + 63.5)/15 

			   = 40.16 ($000)
		  Median = 41.5 ($000)
		  Mode = not available

		  Since mean is less than median, the distribution is negatively skewed (skewed to the left).

	 8	 A random sample of 1  000 customers was asked about their level of satisfaction of a new 
laundry detergent. The responses were summarized as in the table below.

Level of Satisfaction Number of Customers

Strongly satisfied 240

Satisfied 410

Not satisfied 240

Strongly not satisfied 110

(a)	 Define the variable of interest and its type.
		  Level of satisfaction – Qualitative variable

(b)	 Determine the type of measurement scale used.
		  Ordinal level measurement scale

(c)	 State the most appropriate chart to represent this data.
		  Pie chart

Strongly satisfied 
240
24%

Not satisfied 
240
24%

Satisfied
410
41%

Strongly not 
satisfied 

110
11%

(d)	 State the most appropriate measure of central tendency for this data.
		  Mode (since ordinal level and categorical)

	 9	 The table below shows the amount of money spent at school per day (in $) by a sample of 100 
secondary school students.

Amount Spent Per Day ($) Number of Students

0 < 5 60

5 < 10 25

10 < 15 10

15 or more 5
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(a) 	Construct a pie chart for the given data.

0 < 5
60

60%

5 < 10
25

25%

10 < 15
10

10%

15 or more
5

5%

(b)	 Construct a histogram for the given data.

70

60

50

40

30

20

10

0
0 < 5 5 < 10 10 < 15 15 or more

Number of Students vs. Amount 
Spent Per Day ($)

60

25

10
5

(c)	 Calculate the mean, median and mode.
		  Mean and median cannot be determined since there is an open-ended class.

		  Mode = x̂ = 0 + [ 60
60 + 35] 5 = 3.158

(d)	 Sketch the distribution and describe its shape.
		  The distribution can be sketched using a histogram and the peak is at mode = 3.158
		  (skewed to the right or positively skewed).

70

60

50

40

30

20

10

0
0 < 5 5 < 10 10 < 15 15 or more

Number of Students vs. Amount 
Spent Per Day ($)

60

25

10
5
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	10	 A sample of 40 workers at a manufacturing company was randomly selected, and their 
monthly salaries were summarized as in the following table.

Monthly Salary ($) Number of Workers

500 and less than 1 000 7

1 000 and less than 1 500 12

1 500 and less than 2 000 8

2 000 and less than 2 500 5

2 500 and less than 3 000 4

3 000 and less than 3 500 3

3 500 and less than 4 000 1

(a) 	Compute the mean and interpret.

Midpoint ($)  
(x)

Frequency
(f) f·x

750 7 5 250

1 250 12 15 000

1 750 8 14 000

2 250 5 11 250

2 750 4 11 000

3 250 3 9 750

3 750 1 3 750
Total 40 70 000

		  Mean = x– = ∑ 
k
 

i=1
 fixi /n =  70 000/40 = 1 750

		  The mean or average monthly salary of 40 workers is $1 750.

(b) 	Compute the variance of the monthly salary.

Midpoint ($) 
(x)

Frequency
(f) f·x f·x2

750 7 5 250 3 937 500

1 250 12 15 000 18 750 000

1 750 8 14 000 24 500 000

2 250 5 11 250 25 312 500

2 750 4 11 000 30 250 000

3 250 3 9 750 31 687 500

3 750 1 3 750 14 062 500

Total 40 70 000 148 500 000
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	 Variance	= s2 = 1
n – 1

 [∑ k i=1
 fix

2
i  – 1

n
 (∑ k i=1

 fixi)2
 ] = (1/39)[148 500 000 – (1/40)(70 000)2]

			   = 666 524.966

(c) 	Determine the modal value and interpret.
		  The modal class is ‘1 000 and less than 1 500’

		  Mode = x̂ = 1 000 + [ 5
5 + 4 ] 500 = 1 277.78

		  Majority of the workers have monthly salary about $1 277.78.

(d) 	Draw a histogram to illustrate the data, and describe the shape of the distribution. 

14

12

10

8

6

4

2

0
500 and 

less 
than 
1 000

1 000 
and less 

than 
1 500

1 500 
and less 

than 
2 000

2 000 
and less 

than 
2 500

2 500 
and less 

than 
3 000

3 000 
and less 

than 
3 500

3 500 
and less 

than 
4 000

Number of Workers vs. Monthly Salary ($)

		  The shape of the distribution is skewed to the right (positively skewed).

(e)	 The mean and standard deviation of monthly salary of another manufacturing company 
are $1 500 and $750, respectively. Determine which company offers a more stable monthly 
salary.

		  Calculate the coefficient of variation.

		  CV = s
x–  (100) = (√ 666 524.966/1 750) × 100 = 46.65%

		  Another company, CV = (750/1 500) × 100 = 50%
		  Hence, the current company has a more stable monthly salary.

	11	 The following table represents the monthly food expenditures for forty families located in a 
small town.

Food Expenditure
($ thousands) Number of Families

1 up to 2 18

2 up to 3 10

3 up to 4 7

4 up to 5 3

5 up to 6 2
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(a)	 Calculate the mean and standard deviation of the food expenditures.

Midpoint (x) Number of 
Families (f) f·x f·x2

1.5 18 27 40.5
2.5 10 25 62.5
3.5 7 24.5 85.75
4.5 3 13.5 60.75
5.5 2 11 60.5

Total 40 101 310

Mean = x– = ∑ 
k
 

i=1
 fixi /n = 101/40 = 2.525 ($000)

Std. Dev.	= s =  1
n – 1

 [∑ k i=1
 fix

2
i  – 1

n
 (∑ k i=1

 fixi)2
 ] √  = √ (1/39)[310 – (1/40)(101)2]

			   = 1.1873 ($000)

(b) 	Determine the mode of the expenditures and explain its meaning.
		  The modal class is ‘1 up to 2’.

		  Mode = x̂ = 1 + [ 18
18 + 8] 1 = 1.69231 ($000)

		  Majority of the families spent around $1 692.31 per month on food.

(c)	 Draw a histogram to illustrate the data, and describe the shape of the distribution.

16

18

20

12

14

10

8

6

4

2

0
1 up to 2

18

10

7

3
2

2 up to 3 3 up to 4 4 up to 5 5 up to 6

Number of Families vs. Monthly Food Expenditure

		  The shape of the distribution is skewed to the right (positively skewed).

(d) 	Draw a less-than ogive and estimate the percentage of families that spent more than $3 000 
on foods.

Food Expenditure
($ thousands) Number of Families Less-than Cumulative 

Frequency
1 up to 2 18 18
2 up to 3 10 28
3 up to 4 7 35
4 up to 5 3 38
5 up to 6 2 40
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		  Less-than ogive

40

45

30

35

25

20

15

10

5

0
1 up to 2

18

28

35
38

40

2 up to 3 3 up to 4 4 up to 5 5 up to 6

Number of Families vs. Monthly Food Expenditure

		  The percentage of families that spent more than $3 000 on foods is (40–28)/40 = 0.3 or 30%

(e) 	It was found that the mean and standard deviation of the monthly food expenditures of 
families in another town were $3 600 and $650, respectively. Using an appropriate measure, 
compare the dispersions of these two towns. 

		  Calculate the coefficient of variation.

		  CV =  s
x–  (100) = (1.1873 /2.525) × 100 = 47%

		  Another town, CV = (650/3600) × 100 = 18%
		  Hence, the monthly food expenditures of families in another town are less variable or more 

stable.

	12	 A lecturer is interested in determining the time taken by his students to complete a quiz. 
A random sample of 50 students is selected, and their completion times (in minutes) were 
summarized in the table below.

Completion Time (minutes) Frequency

0 and less than 10 4

10 and less than 20 8

20 and less than 30 13

30 and less than 40 12

40 and less than 50 7

50 and less than 60 6
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(a)	 Draw a histogram and describe the shape of the distribution.

12

14

10

8

6

4

2

0
0 and less 

than 10
10 and 

less than 
20

20 and 
less than 

30

30 and 
less than 

40

40 and 
less than 

50

50 and 
less than 

60

4

8

13
12

7
6

No. of Students vs. Completion Time (min)

		  The shape of the distribution is slightly skewed to the left and almost bell-shaped.

(b)	 Construct a ‘less-than’ ogive and then estimate the median.

Completion Time (minutes) Frequency Less-than Cum. Freq.

0 and less than 10 4 4

10 and less than 20 8 12

20 and less than 30 13 25

30 and less than 40 12 37

40 and less than 50 7 44

50 and less than 60 6 50

		  Less-than ogive

50

60

40

30

20

10

0

4

12

25

37

44

50

0 and less 
than 10

10 and 
less than 

20

20 and 
less than 

30

30 and 
less than 

40

40 and 
less than 

50

50 and 
less than 

60

No. of Students vs. Completion Time (min)

		  The median is at 50% of the data (25 students); from ogive, it is estimated at 30 min.

(c)	 Using the ogive obtained in (b), determine the number of students who took more than 
35 minutes to complete the quiz.

		  The number of students who took more than 35 minutes to complete the quiz is  
50 – 32 = 18
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(d)	 Compute the mean completion time and the standard deviation. 

Midpoint (x) (minutes) f f·x f·x2

5 4 20 100

15 8 120 1 800

25 13 325 8 125

35 12 420 14 700

45 7 315 14 175

55 6 330 18 150

Total 50 1 530 57 050

Mean = x– = ∑ 
k
 

i=1
 fixi /n = 1 530/50 = 30.6 minutes

Std. dev. = s	 =  1
n – 1

 [∑ k i=1
 fix

2
i  – 1

n
 (∑ k i=1

 fixi)2] √  = √ (1/49)[57 050 – (1/50)(1 530)2]

			   = 14.45 minutes

(e)	 Compute the Pearson’s coefficient of skewness and describe the shape of the distribution.

		  Pearson’s coefficient of skewness, r = 3(x– – x~)
s

 = 3(30.6 – 30)/14.45 = 0.1246

		  The shape of the distribution is slightly skewed to right and almost symmetrical.

	13	 A researcher had conducted a survey on three different groups of consumers (A, B and C) 
to determine the level of satisfaction for a particular product. The results (in percent) were 
summarized as follows:

Statistical Measures A B C
Mean 85 65 65
Median 75 65 75
Mode 65 65 85
Standard deviation 12 8 10

(a) 	Using an appropriate measure, determine which group has the most consistent level of 
satisfaction.

		  Calculate the coefficient of variation.
		  CVA = (12/85) × 100 = 14.12%, CVB = (8/65) × 100 = 12.31%, CVC = (10/65) × 100 = 15.38% 
		  Group B has the most consistent level of satisfaction.

(b) 	Sketch the distribution for each group using the mean, median and mode. Which distribution 
is skewed to the right?

 

A

65 6575 85 65 75 85

B C

		  Distribution A is skewed to the right.
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	14	 The following stem-and-leaf display describes the weekly entertainment expenses (in $00) of 
a consultant firm.

2
3
4
5
6
7

0 1 4
0 2 4 7 8
0 1 3 5 7 7 8 9
1 3 4 5 5 6 8
2 3 4 6
1 5 7

(a) 	Determine the first, second and third quartiles.
		  First quartile (25% of 30 or 7.5) is between seventh and eighth values; 
		  (37 + 38)/2 = 37.5 or $3 750
		  Second quartile (50% of 30 or 15) is the 15th value; 48 or $4 800 
		  Third quartile (75% of 30 or 22.5) is between 22nd and 23rd values; 
		  (56 + 58)/2 = 57 or $5 700

(b) 	Compute the interquartile range.
		  Interquartile range = (third quartile – first quartile) = 57 – 37.5 = 19.5 or $1 950

(c) 	Draw a box-plot representing the data. Comment on the skewness.

20 25 30 35 40 45 50 55 60 65 70 75 80

Q1

Q2
Q3Min. value Max. value

		  The skewness is close to zero (slightly positive).

	15	 The new management of Tower Hotel decided to analyze the number of calls per day at the 
receptionist counter during a two-week school holiday. From the collected data, the following 
were obtained.

Minimum Number 
of Calls Quartile 1 Quartile 2 Quartile 3 Maximum Number 

of Calls
20 25 33 50 75

(a) 	What is the average number of calls per day did the hotel receive?
		  Since the distribution is highly skewed, the suitable average is the median.
		  Hence, the average number of calls per day is 33.

(b)	 Draw an appropriate diagram to illustrate the distribution of the number of calls received per 
day and comment on the skewness.

20 25 30 35 40 45 50 55 60 65 70 75 80

Q1

Q2
Q3Min. value Max. value

	 The distribution of the number of calls received per day is highly skewed to the right.
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CHAPTER Inferential Statistics: 
Estimation and 
Hypothesis Testing6

	 1	 Let X1, X2 and X3 be independent, identically distributed random variables with mean µ and 
variance σ2, and A = (X1 + X2 + X3)/3. Is A an unbiased estimator of µ?

		  A is an un biased estimator of µ if E(A) = µ.

		  E(A) = E[(X1 + X2 + X3)/3] = [E(X1) + E(X2) + E(X3)]/3 = (m +m +m)/3 = µ.

		  Hence, A is an unbiased estimator of µ.

	 2	 Suppose that X is a binomial random variable with parameters n and p. Is p̂ = X/n an unbiased 
estimator of p?

		  p̂ = X/n is an unbiased estimator of p if E(p̂) = p.

		  E(p̂) = E(X/n) = E(X)/n = µ/n; substitute µ = np we have E(p̂) = np/n = p.

		  Hence, p̂ = X/n is an unbiased estimator of p.

	 3	 From a random sample of 50 graduating students at a private college, the mean CGPA is 
2.95 with a standard deviation of 3.25. Construct a 90% confidence interval for the mean 
CGPA for all graduating students at this college.

		  x– – zα/2 σ
√
–
n

 < µ < x– + zα/2 σ
√
–
n

 ; since n = 50 is large, replace σ with s; 

		  z0.10/2 = z0.05 = < 1.645;

		  Thus, the 90% confidence interval for the mean CGPA is 

		  2.95 – 1.645(3.25)/√
—
50 < µ < 2.95 + 1.645(3.25)/√

—
50

		  = 2.194 < µ < 3.706 or [2.194, 3.706].

	 4	 Simple random samples of students are selected from two different faculties; 12 students 
from Faculty of Science and 16 students from Faculty of Business. The sample from Faculty 
of Science has an average CGPA of 2.75 with a standard deviation of 2.85, and the sample 
from Faculty of Business has an average CGPA of 2.95 with a standard deviation of 4.25. 
Determine the 95% confidence interval for the difference in CGPAs at the two faculties 
assuming that CGPAs in both faculties came from normal distributions.

		  [Confidence Interval for µ1 – µ2; σ1 ≠ σ2 and unknown] 

		  (x–1 – x–2) – tα/2  √ S2
1

n1

S2
2

n2
+  < µ1 – µ2 < (x–1 – x–2) +  tα/2  √ S2

1
n1

S2
2

n2
+ ,
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		   = 
(s2

1/n1 + s2
2/n2)2

[(s2
1/n1)2/(n1 – 1)] + [(s2

2/n2)2/(n2 – 1)] 
 = 

(0.6769 + 1.1289)2

[0.041654 + 0.08496] 
 = 25.75 ≈ 26;

		  Hence, t0.025 with d.f. = 26 is 2.056.

		  The 95% confidence interval for the difference in CGPAs is

		  (2.75 – 2.95) – 2.056 √1.8058  < µ1 – µ2 < (2.75 – 2.95) + 2.056 √1.8058
		  = –0.2 – 2.763 < µ1 – µ2 < –0.2 + 2.763 = –2.963 < µ1 – µ2 < 2.563 or [–2.963, 2.563].

	 5	 In a study on household income in a small town, 64 families were randomly selected. It is 
found that 24 families have monthly household incomes of less than $2 500. Find a 90% 
confidence interval for the percentage of all families in the town with household incomes less 
than $2 500 per month.

		  [Confidence Interval for proportion or percentage; large sample] 

		  p̂ – zα/2 √ p̂q̂
n

 < p < p̂ + zα/2 √ p̂q̂
n

; sample proportion = 0.375 or 37.5%, z0.05 = 1.645.

		  The 90% confidence interval for the percentage of families with < $2 500 per month is

		  0.375 – 1.645 √ 0.375(0.625)
64

 < p < 0.375 + 1.645 √ 0.375(0.625)
64

  = 0.27545 < p < 0.47455,

		  or in percentage [27.545%, 47.455%].

	 6	 In a primary school, there are two standard six classes with 35 and 40 students, respectively. 
Within the first class, 18 students are female, whereas within the second class, 22 are female. 
Assuming that the data follows the normal distribution, find the 95% confidence interval of 
the difference between the female proportions of the two classes.

		  [Large-sample confidence interval for p1 – p2]

		  (p̂1 – p̂2) – zα/2 √ p̂1q̂1
n1

p̂2q̂2
n2

+  < p1 – p2 < (p̂1 – p̂2) – zα/2 √ p̂1q̂1
n1

p̂2q̂2
n2

+ ; z0.025 = 1.96.

		  The 95% confidence interval of the difference between two female proportions is

		  (0.5143 – 0.55) – 1.96 0.5143(0.4857) + 0.55(0.45)
35 40√  < p1 – p2 < (0.5143 – 0.55) + 1.96 0.5143(0.4857) + 0.55(0.45)

35 40√
		  = –0.262 < p1 – p2 < 0.1906, or [–0.262, 0.1906].

	 7	 The mean kilometres travelled for a random sample of 20 cars in a car park is 54 275 km with 
a variance of 13 282. Construct a 97% confidence interval for the variance. 

		  (n – 1)S2

χ2
α/2

 < σ2 < (n – 1)S2

χ2
1–α/2

 ; χ2
α/2,n–1 = χ2

0.015,19 = 34.742; χ2
1–α/2,n–1 = χ2

0.985,19 = 8.159;

		  The 97% confidence interval for the variance is

		  (20 – 1)13 282
34.742

 < σ2 < (20 – 1)13 282
8.159

 = 7263.77 < σ2 < 30930.02, or [7263.77, 30930.02].
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	 8	 Suppose two groups of adults were selected randomly and their heights were measured. The 
first group of 35 adults has mean height of 167 cm with a sample variance of 28.5 cm, whereas 
the second group of 30 has mean height of 164 cm with a sample variance of 32.4 cm. Find a 
90% confidence interval for the true ratio of the two variances.

		

S2
1

S2
2

1
fα/2 (v1, v2)  

<
 

σ2
1

σ2
2  

<
 

S2
1

S2
2  

fα/2 (v1, v2); 

		  fα/2 (v1, v2) = f0.05(34.29) = 1.8317, fα/2 (v2, v1) = f0.05(29.34) = 1.8020.

		  The 90% confidence interval for the true ratio of the two variances is

		  28.5
32.4  1

(1.8317)  < 
σ2

1
σ2

2
 < 28.5

32.4 (1.8020) = 0.4802 < 
σ2

1
σ2

2
 < 1.5851, or [0.4802, 1.5851].

	 9	 A car manufacturer claimed that the average gas mileage of its new brand of hybrid car is 25 
miles per liter. The gas mileages for ten randomly selected hybrid cars of the new brand are 
recorded as 24.4, 25.1, 22.6, 26.2, 25.3, 23.2, 21.9, 23.8, 24.5 and 25.0. Assume that the gas 
mileage is normally distributed. Does the sample data support the manufacturer’s claim at 
the 0.01 significance level?

		  [Testing for the Population Mean: Small Sample, Population Variance Unknown]
1.	 Null and alternate hypotheses: H0: µ = 25 m/l versus H1: µ ≠ 25 m/l.
2.	 Significance level: α = 0.01.
3.	 Sample standard deviation, s = 1.325, sample mean = 24.2.

	 Test statistic: t = 
x– – µ0

s/√
–
n

 = 
24.2 – 25
1.325/√

–—
10

 = –1.909.

4.	 Decision rule: Critical region: |t| > t0.005 = 3.25 (d.f.= 9), i.e. reject H0 if |t| > 3.25.
5.	 Decision: Since |t| = 1.909 < 3.25, do not reject H0 and conclude that the sample data support 

the manufacturer’s claim (25 m/l) at the 0.01 significance level.

	10	 A town uses thousands of street light bulbs each year. The brand of bulb the town currently 
uses has a mean life of 1 500 hours. A supplier claims that its new brand of street light bulbs 
(with the same cost) has a mean life of more than 1 500 hours. The mayor has decided to 
purchase the new brand if the test evidence supports the supplier’s claim at the 0.025 level 
of significance. Suppose 100 bulbs of the new brand were tested with the following results: 
x– = 1 620 hours and s = 162 hours. Will the mayor of the town purchase the new brand of 
street light bulbs?

		  [Testing for the Population Mean: Large Sample, Population Variance Unknown]
1.	 Null and alternate hypotheses: H0: µ = 1 500 hours versus H1: µ > 1 500 hours.
2.	 Significance level: α = 0.025.

3.	 Test statistic: z = 
x– – µ0

s/√
–
n

 = 
1 620 – 1 500

162/√100
 = 7.407.

4.	 Decision rule: Critical region: z > z0.025= 1.96, i.e. reject H0 if z > 1.96.
5.	 Decision: Since z =7.407 > 1.96, reject H0 and agree that the new brand has a mean life of 

more than 1 500 hours—the mayor should purchase the new brand.
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	11	 The average amount of time male and female college students spend playing computer games 
each day is believed to be the same. A random sample of 15 male students yield a mean of 5 
hours with a standard deviation of 2.5 hours, whereas a random sample of 10 female students 
give a mean of 4 hours with a standard deviation of 3.5 hours. Is there a difference in the 
average amount of time male and female students play computer games each day? Test at the 
5% level of significance.

		  [Testing for the Two Population Means: Small Samples, Population Variances Unknown]
1.	 Null and alternate hypotheses: H0: µ1 – µ2 = 0 versus H1: µ1 – µ2 ≠ 0.
2.	 Significance level: α = 0.05.

3.	 Test statistic: sp = 
(n1 – 1)(s2

1) + (n2 – 1)(s2
2)

n1 + n2 – 2√  
= 

(14)(6.25) + (9)(12.25)
15 + 10 – 2√  

= 2.9322,

			   t = 
(x–1 – x–2) – d0

sp √((1/n1) + (1/n2))
 = 

(5 – 4) – 0

2.9322 √((1/15) + (1/10))
 = 0.8354.

4.	 Decision rule: Critical region:  |t| > t0.025,23= 2.069, i.e. reject H0 if |t| > 2.069.
5.	 Decision: Since t = 0.8354 < 2.069, do not reject H0 and we are unable to conclude that there 

is a difference in the average amount of time male and female students play computer games 
each day.

	12	 A kitchen cabinet manufacturer is interested in comparing assembly times for two assembly 
processes. A random sample of five kitchen cabinets is selected and the assembly time (in 
minutes) on each cabinet of each process is recorded, as shown in the table below. 

Cabinet Process 1 Process 2 di

1 120 145 25

2 165 160 -5

3 95 90 -5

4 110 115 5

5 85 80 -5

		  Based on the data, can the manufacturer conclude, at the 10% level of significance, that the 
mean assembly times for the two processes differ? 

 		  [Testing for the Two Population Means: Paired Observations]
1.	 Null and alternate hypotheses: H0: µD = 0 versus H1: µD ≠ 0.
2.	 Significance level: α = 0.10.

3.	 Test statistic: d– = 3 and sd = 13.038; t = 
d– – d0

sd/√
–
n

 = 
3 – 0

13.038/√5
 = 0.5145.

4.	 Decision rule: Critical region: |t| > t0.05,4= 2.132, i.e. reject H0 if |t| > 2.132.
5.	 Decision: Since t = 0.5145 < 2.132, do not reject H0 and we are unable to conclude that the 

mean assembly times for the two processes differ at 10% level.
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7 F-Test and Analysis 
of Variance (ANOVA)

	 1	 Using a two-tailed test and the 0.05 level of significance, what is the critical F value for a 
sample of nine observations in the numerator and ten in the denominator?

		  F0.05/2, 9-1, 10-1 = F0.025, 8, 9 = 4.10 (from F-distribution table).

	 2	 The following hypotheses are given:

		  H0 : 2
1 = 2

2     H1 : 2
1 ≠ 2

2 .

		  The first random sample of ten observations gives a standard deviation of 15, while the second 
random sample of eleven observations gives a standard deviation of 12. At the 0.01 level of 
significance, test whether there is a difference in the variation of the two populations.

		  The appropriate test statistic is the F-distribution.

		  Since this is a two-tailed test, the significance level is 0.005, found by 0.01/2 = 0.005. There are 
n1 – 1 = 10 – 1 = 9 degrees of freedom in the numerator, and n2 – 1 = 11 – 1 = 10 degrees of 
freedom in the denominator. The critical value, from F-distribution table, is F0.005, 9, 10 = 5.97. 

		  The ratio of the sample variances, s2
1/ s2

2  = 152/122 = 1.5625. Since this test statistic is less than the 
critical value, the null hypothesis is not rejected, and hence the variation in the two populations 
is the same. 

	 3	 A lecturer wishes to compare the test scores of his students from two different classes. The 
mean test score of 25 students in the first class is 75% with a standard deviation of 30%. The 
mean test score of 26 students in the second class is 77% with a standard deviation of 25%. 
At the 0.01 significance level, can he conclude that there is more variation in the first class?

		  H0 : 2
1 = 2

2 (same variation)	 H1 : 2
1  > 2

2 (more variation in the first class).

		  The appropriate test statistic is the F-distribution. This is a one-tailed test with n1 – 1 = 25 – 1 
= 24 degrees of freedom in the numerator, and n2 – 1 = 26 – 1 = 25 degrees of freedom in the 
denominator. The critical value, from F-table, is F0.01, 24, 25 = 2.62. 

		  The ratio of the sample variances is 302/252 = 1.44. Since this test statistic is less than the critical 
value 2.62, the null hypothesis is not rejected, and hence the variation in the two classes is the 
same. 
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	 4	 Five students were selected for a special program based on three different tests. The scores (in 
%) of the tests are summarized as follows: 

Test 1 Test 2 Test 3
86 93 83
76 82 94

100 74 95
98 93 84

		  At the 0.05 significance level, test the hypothesis that the means of the three tests are equal. 
(a)	 State the null and alternate hypotheses, and the decision rule?
		  H0 : µ1 = µ2 = µ3  versus  H1 : at least one mean is different.
		  There is k-1 = 3-1 = 2 degrees of freedom in the numerator, and there are 12 observations 

(three samples of 4 each). Therefore, there are N-k=12-3 = 9 degrees of freedom in the 
denominator. From F-table, the critical value is F0.05, 2, 9 = 4.26. 

		  The decision rule is not to reject the null hypothesis H0 if the F value is less than or equal to 
4.26, or reject H0 and accept H1 if the F value is greater than 4.26. 

(b)	 Compute SST, SSE, SS total, and complete an ANOVA table.

Test 1 Test 2 Test 3

Total

Score 
(%)
x1

Score 
squared

x2
1

Score 
(%)
x2

Score 
squared

x2
2

Score 
(%)
x3

Score 
squared

x2
3

86
76

100
98

7 396
5 776

10 000
9 604

93
82
74
93

8 649
6 724
5 476
8 649

83
94
95
84

6 889
8 836
9 025
7 056

Col. total: 
Tc

360 342 356 1 058

Sample
size: nc

4 4 4 12

Sum of
squares: x2 32 776 29 498 31 806 94 080

	 SST = ∑[ T 2
c

nc
] – (∑x)2

N
 = [3602

4
 + 3422

4
 + 3562

4 ] – 1 0582

12
 = 93 325–93 280.33 = 44.67.

	 SSE = ∑x2 – ∑[ T 2
c

nc
] = 94 080 – 93 325 = 755. 

	 SS total = SST + SSE = 44.67 + 755 = 799.67.

ANOVA table:

Source of variation
(1)

Sum of 
squares

(2)
Degrees of 

freedom

(3)
Mean square

 (1)/(2)
Between treatments SST = 44.67 k – 1 = 3 - 1 = 2 SST/2 = 44.67/2 = 22.333
Error (within treatments) SSE = 755 N – k=12 – 3 = 9 SSE/9 = 755/9 = 83.889
SS total 799.67
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(c)	 State your decision regarding the null hypothesis.

		  The test statistic, F = 
SST/2

SSE/(N – k)
 = 

MSTR
MSE  = 

22.333
83.889 = 0.266.

		  Since the test statistic F = 0.266 is less than the critical value of 4.26, H0 is not rejected at the 
0.05 level. Hence, the means of the three tests are equal.

	 5	 An operations manager of a large firm is studying the monthly sales (in $’000) of three 
subsidiary companies over a six-month period as given in the table below. 

Company A Company B Company C
152 148 150
135 158 148
130 136 126
142 138 128
125 140 140
128 127 135

		  At the 0.01 level of significance, can we conclude that there is a difference in the means of 
monthly sales of the three subsidiary companies over a six-month period?
(a)	 State the null and alternate hypotheses, and the decision rule?

		  H0 : µ1 = µ2 = µ3 vs. H1: there is a difference in the means of monthly sales.

		  There is k-1 = 3-1 = 2 degrees of freedom in the numerator, and there are 18 observations 
(three samples of 6 each). Therefore, there are N-k=18-3= 15 degrees of freedom in the 
denominator. From F-table, the critical value is F0.01, 2, 15 = 6.36. 

		  The decision rule is not to reject H0 if the test statistic (F value) is less than or equal to 6.36, 
or reject H0 and accept H1 if the F value is greater than 6.36. 

(b)	 Compute SST, SSE, SS total and complete an ANOVA table.

Company A Company B Company C

Total

Sales 
($000)

x1

Sales 
squared

x2
1

Sales 
($000) 

x2

Sales 
squared 

x2
2

Sales 
($000) 

x3

Sales 
squared 

x2
3

152
135
130
142
125
128

23 104
18 225
16 900
20 164
15 625
16 384

148
158
136
138
140
127

21 904
24 964
18 496
19 044
19 600
16 129

150
148
126
128
140
135

22 500
21 904
15 876
16 384
19 600
18 225

Col. total: Tc 812 847 827 2 486

Sample
size: nc 

6 6 6 18

Sum of
squares: x2 110 402 120 137 114 489 345 028
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		  SST = ∑[ T 2
c

nc
] – (∑x)2

N
 = [8122

6
 + 8472

6
 + 8272

6 ] – 2 4862

18
  = 343 447 –  343 344 = 103.

		  SSE = ∑x2 – ∑[ T 2
c

nc
]  = 345 028 – 343 447 = 1  581. 

		  SS total = SST + SSE = 103 + 1 581 = 1 684.

		  ANOVA table:

Source of variation
(1)

Sum of 
squares

(2)
Degrees of 

freedom

(3)
Mean square

(1)/(2)
Between treatments SST=103 k – 1 = 3 – 1 = 2 SST/2 = 103/2 = 51.5
Error (within treatments) SSE = 1 581 N – k = 18 – 3 = 15 SSE/15 = 1581/15 = 105.4
SS total 1 684

(c)	 State your decision regarding the null hypothesis.

		  The test statistic,  F = 
SST/2
SSE/15

  = 
51.5

105.4    = 0.489.

		  Since the test statistic F = 0.489 is less than the critical value of 6.36, H0 is not rejected. Hence, 
the means of monthly sales of the three companies are equal.

	 6	 A manager of a company wishes to study the number of children belonging to each of his 
employees. The employees are divided according to four different departments and each 
department has different number of employees. The data obtained are as follows:

Department 1 Department 2 Department 3 Department 4
3 2 3 2
2 0 4 6
4 1 5 3
1 3 4
5 2
3 4
2

		  Test the hypothesis that the means number of children of employees at the four departments 
are equal at the 0.10 significance level.

		  H0 : µ1 = µ2 = µ3 = µ4 vs. H1 : the means number of children are not equal.

		  The degrees of freedom in the numerator is k – 1 = 4 – 1 = 3. Since there are 20 observations, the 
degrees of freedom in the denominator is N – k = 20 – 4 = 16. From F-table, the critical value is 
F0.10, 3, 16 = 2.46. 



F-Test and Analysis of Variance (ANOVA)
5

Depart. 1 Depart. 2 Depart. 3 Depart. 4 Total

No. of 
children

x1

No. 
children 
squared

x2
1

No. of 
children

x2

No. 
children 
squared 

x2
2

No. of 
children

x3

No. 
children 
squared 

x2
3

No. of 
children

x4

No. 
children 
squared 

x2
4

3
2
4
1
5
3
2

9
4

16
1

25
9
4

2
0
1
3
2
4

4
0
1
9
4

16

3
4
5
4

9
16
25
16

2
6
3

4
36
9

Col. 
total: Tc

20 12 16 11 59

Sample
size: nc

7 6 4 3 20

Sum of
squares: 
x2

68 34 66 49 217

		  SST	 = ∑[ T 2
c

nc
] – (∑x)2

N
 = [ 202

7
 + 122

6
 + 162

4
 + 112

3 ] – 592

20
   

			   = (57.143 + 24 + 64 + 40.333) – 174.05 = 11.426.

		  SSE = ∑x2 – ∑[ T 2
c

nc
] = 217 – 185.476 = 31.524. 

		  SS total = SST + SSE = 11.426 + 31.524 = 42.95.

		  ANOVA table:

Source of variation
(1)

Sum of 
squares

(2)
Degrees of 

freedom

(3)
Mean square

 (1)/(2)

Between treatments SST = 11.426 k – 1 = 4 – 1 = 3 SST/3 = 11.426/3 = 3.809

Error (within treatments) SSE = 31.524 N – k = 20 – 4 = 16 SSE/16 = 31.524/16 = 1.97025

SS total 42.95

		  The test statistic, F = 3.809/1.97025 = 1.933. Since the test statistic is less than the critical value 
of 2.46, H0 is not rejected. Hence, the means number of children of employees at the four 
departments are equal.
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	 7	 A fresh PhD graduate has job offers from four private universities. To decide which offer 
to take, he asked a sample of lecturers currently teaching at these universities about their 
monthly salaries. The information is summarized in the following table.

Monthly Salaries of Senior Lecturers (in $’000)
University A University B University C University D

2.5 4.5 2.8 3.0
2.8 3.3 4.2 2.5
3.5 2.2 3.6 5.0
4.0 2.5

		  At the 0.10 level of significance, is there a difference in the mean salaries of lecturers among 
the four universities?

		  H0 : µ1 = µ2 = µ3 = µ4 vs. H1 : the mean salaries of lecturers are not equal.

		  The degrees of freedom in the numerator is k – 1 = 4 – 1 = 3. The degrees of freedom in the 
denominator N – k = 14 – 4 = 10. From F-table, the critical value is F0.10, 3, 10 = 2.73. 

University A University B University C University D

Total

Salary 
($000)

x1

Salary 
squared

x2
1

Salary 
($000)

x2

Salary 
squared

x2
2

Salary 
($000)

x3

Salary 
squared

x2
3

Salary 
($000)

x4

Salary 
squared

x2
4

2.5
2.8
3.5
4.0

6.25
7.84

12.25
16

4.5
3.3
2.2
2.5

20.25
10.89
4.84
6.25

2.8
4.2
3.6

7.84
17.64
12.96

3.0
2.5
5.0

9
6.25
25

Col. total: Tc 12.8 12.5 10.6 10.5 46.4
Sample
size: nc

4 4 3 3 14

Sum of
squares: x2 42.34 42.23 38.44 40.25 163.26

		  SST	 = ∑[ T 2
c

nc
] – (∑x)2

N
 = [12.82

4
 + 12.52

4
 + 10.62

3
 + 10.52

3 ] – 46.42

14
  

			   = (40.96 + 39.0625 + 37.4533 + 36.75) – 153.783 = 0.4428.

		  SSE = ∑x2 – ∑[ T 2
c

nc
]  = 163.26 – 154.2258 = 9.0342. 

		  SS total = SST + SSE = 0.4428 + 9.0342 = 9.477.

		  ANOVA table:

Source of variation
(1)

Sum of 
squares

(2)
Degrees of 

freedom

(3)
Mean square

 (1)/(2)
Between treatments SST = 0.4428 k –1 = 4 – 1 = 3 SST/3 = 0.4428/3 = 0.1476
Error (within treatments) SSE = 9.0342 N – k = 4 – 4 = 10 SSE/10=9.0342/10= 0.90342
SS total 9.477

		  The test statistic, F = 0.1476/0.90342 = 0.163. Since the test statistic is less than the critical value 
of 2.73, H0 is not rejected. Hence, the mean salaries of lecturers among the four universities are 
equal.
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Chi-square 
Applications8

	 1	 Given the following contingency table, for the test of homogeneity, calculate the expected 
count (E) for all cells.

Treatment Total
1 30 30 15 75
2 60 90 75 225

Total 90 120 90 300

		  Expected count Eij = Row Total i * Column Total j/Grand Total.  

E11 75 × 90/300 22.5

E12 75 × 120/300 30

E13 75 × 90/300 22.5

E21 225 × 90/300 67.5

E22 225 × 120/300 90

E23 225 × 90/300 67.5

	 2	 The following table shows the number of students for three groups of a degree program that 
agreed or disagreed with a new curriculum. 

Student Group

1 2 3

Agreed 18 22 12

Disagreed 24 16 28

		  Can we conclude that the opinions of the three student groups regarding the new curriculum 
are homogeneous?

		  Test for homogeneity; H0: three groups are homogeneous

1 2 3 Row Total
1 18 22 12 52
2 24 16 28 68

Column Total 42 38 40 120
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O E (O-E)2/E

18 52 × 42/120 = 18.2 0.002198

22 52 × 38/120 = 16.47 1.856764

12 52 × 40/120 = 17.33 1.639290

24 68 × 42/120 = 23.8 0.001858

16 68 × 38/120 = 21.53 1.420385

28 68 × 40/120 = 22.67 1.253149

6.173644

		  The critical value at α = 5% level of significance with degrees of freedom (2 – 1)(3 – 1) = 2 is 
χ2

2 (0.05) = 5.99. Since the test statistic 6.17 is greater than this critical value, reject H0, and hence 
the three groups are not homogeneous.  

	 3	 Two dice are tossed 100 times with the following results:

x 2 3 4 5 6 7 8 9 10 11 12
f 3 5 11 10 8 23 15 10 9 4 2

		  At the 0.05 level of significance, can we conclude that the two dice are balanced?

		  Test of Goodness-of-fit;

		  H0: the two dice are balanced (each side has equal chance of occurring, 1/6)

x O E (O-E)2/E
2 3 1/36 × 100 = 2.778 0.0178
3 5 2/36 × 100 = 5.555 0.0556
4 11 3/36 × 100 = 8.333 0.8533
5 10 4/36 × 100 = 11.111 0.1111
6 8 5/36 × 100 = 13.889 2.4969
7 23 6/36 × 100 = 16.667 2.4067
8 15 5/36 × 100 = 13.889 0.0889
9 10 4/36 × 100 = 11.111 0.1111

10 9 3/36 × 100 = 8.333 0.0533
11 4 2/36 × 100 = 5.555 0.4356
12 2 1/36 × 100 = 2.778 0.2178

6.848

		  The critical value at 5% level of significance with degrees of freedom = 11 – 1 = 10 is χ2
10 (0.05) = 

18.307. Since the test statistic 6.848 is less than this critical value, do not reject H0, and hence the 
two dice are balanced.  
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	 4	 A study claimed that the satisfaction level of residents of an apartment block regarding 
services provided by the management are as follows: 30% are highly satisfied; 25% are 
satisfied; 20% are not sure, 15% are dissatisfied; and 10% are highly dissatisfied. One year 
later, after improving the quality of all services, the management wants to know whether these 
percentages have changed or not. A random sample of 50 residents of the same apartment 
block were asked and found that 18 are highly satisfied; 15 are satisfied; 7 are not sure, 5 are 
dissatisfied and 5 are highly dissatisfied. At the 0.01 level of significance, conduct the Chi-
square test for goodness-of-fit and state your conclusions.

		  Test of Goodness-of-fit; H0: the percentages remain the same

Satisfaction level O E (O-E)2/E
Highly satisfied 18 15 0.6
Satisfied 15 12.5 0.5
Not sure 7 10 0.9
Dissatisfied 5 7.5 0.833
Highly dissatisfied 5 5 0

2.833

		  The critical value at 1% level of significance with degrees of freedom = 5 – 1 = 4 is χ2
4 (0.01) = 

13.2767. Since the test statistic 2.8333 is less than the critical value, do not reject H0, and hence 
the percentages remain the same.

	 5	 In a survey, 200 respondents (120 in Kuala Lumpur and 80 in Johor Bahru) were asked to 
select their favourite public transports for long-distance travels within Malaysia. Of the 
Kuala Lumpur respondents, 60 selected airplane, 42 selected express bus and 18 selected 
train. Of the Johor Bahru respondents, 25 selected airplane, 35 selected express bus and 20 
selected train. At the 0.10 significance level, test whether the Kuala Lumpur and Johor Bahru 
respondents are independent of the public transports preference for long-distance travels? 

Public Transport KL JB Row Total
Airplane 60 25 85
Express bus 42 35 77
Train 18 20 38
Column Total 120 80 200

		  Test of Independence; 

		  H0: KL and JB respondents are independent of the public transports preference.

O E (O–E)2/E
60 85 × 120/200 = 51 1.588
25 85 × 80/200 = 34 2.382
42 77 × 120/200 = 46.2 0.382
35 77 × 80/200 = 30.8 0.573
18 38 × 120/200 = 22.8 1.011
20 38 × 80/200 = 15.2 1.516

7.451
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		  The critical value at 10% level of significance with degrees of freedom = (3 – 1)(2 – 1) = 2 is χ2
2 

(0.10) = 4.60517. Since the test statistic 7.451 is greater than the critical value, reject H0 and hence 
the KL and JB respondents are not independent of the public transports preference for long-
distance travels.

	 6	 A researcher wishes to know the opinions of the people in the three east coast states of 
Malaysia (Kelantan, Terengganu and Pahang) on three types of rice that are popular among 
them. A random sample of 300 respondents (100 in each state) is selected, and each of them 
was asked to choose one type of rice they most prefer. The results are given below: 

Nasi Dagang Nasi Berlauk Nasi Kerabu
Kelantan 23 46 31
Terengganu 48 27 25
Pahang 33 38 29

		  Conduct the suitable test and state your conclusion.

State Nasi Dagang Nasi Berlauk Nasi Kerabu Row Total
Kelantan 23 46 31 100
Terengganu 48 27 25 100
Pahang 33 38 29 100
Column Total 104 111 85 300

		  Test of Independence; test at 5% level of significance.

		  H0: Respondents of the three states are independent of the type of rice they most prefer.

O E (O-E)2/E
23 100 × 104/300 = 34.667 3.926
46 100 × 111/300 = 37 2.189
31 100 × 85/300 = 28.333 0.251
48 100 × 104/300 = 34.667 5.128
27 100 × 111/300 = 37 2.703
25 100 × 85/300 = 28.333 0.392
33 100 × 104/300 = 34.667 0.080
38 100 × 111/300 = 37 0.027
29 100 × 85/300 = 28.333 0.016

14.712

		  The critical value at 5% level of significance with degrees of freedom = (3 – 1)(3 – 1) = 4 is χ2
4 

(0.05) = 9.48773. Since the test statistic 14.712 is greater than the critical value, reject H0 and 
conclude that the respondents of the three states are not independent of the type of rice they most 
prefer.
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	 7	 A random sample of 70 families in a rural area was classified according to the monthly 
household income and the number of family members:

Monthly Household 
Income

Number of Family Members

2–5 6–9 10–12 More than 12

Less than $1 000
$1 001 to $2 000
$2 001 to $3 000
More than $3 000

10
8
7
3

15
7
5
2

5
3
2
0

0
2
1
0

		  Test the hypothesis, at the 0.01 significance level, that the size of a family is independent of 
the monthly household income.

Monthly Household 
Income

Number of Family Members
Row Total

2–5 6–9 10–12 > 12
Less than $1 000 10 15 5 0 30
$1 001 to $2 000 8 7 3 2 20
$2 001 to $3 000 7 5 2 1 15
More than $3 000 3 2 0 0 5
Column Total 28 29 10 3 70

		  Test of Independence; 

		  H0: The size of a family is independent of the monthly household income.

O E (O–E)2/E
10 30 × 28/70 = 12.0000 0.3333
15 30 × 29/70 = 12.4286 0.5320
5 30 × 10/70 = 4.2857 0.1190
0 30 × 3/70 = 1.2857 1.2857
8 20 × 28/70 = 8.0000 0.0000
7 20 × 29/70 = 8.2857 0.1995
3 20 × 10/70 = 2.8571 0.0071
2 20 × 3/70 = 0.8571 1.5238
7 15 × 28/70 = 6.0000 0.1667
5 15 × 29/70 = 6.2143 0.2373
2 15 × 10/70 = 2.1429 0.0095
1 15 × 3/70 = 0.6429 0.1984
3 5 × 28/70 = 2.0000 0.5000
2 5 × 29/70 = 2.0714 0.0025
0 5 × 10/70 = 0.7143 0.7143
0 5 × 3/70 = 0.2143 0.2143

6.0435

		  The critical value at 1% level of significance with degrees of freedom = (4 – 1)(4 – 1) = 9 is  
χ2

9 (0.01) = 21.666. Since the test statistic 6.0435 is less than the critical value, do not reject H0 and 
conclude that the size of a family is independent of the monthly household income.



SOLUTION MANUAL

CHAPTER Simple Linear 
Regression and 
Correlation9

	 1	 From a random sample of 12 outpatients, the following data were obtained:

Patient 1 2 3 4 5 6 7 8 9 10 11 12
Age (years) 36 34 49 43 23 37 24 53 27 19 62 59
No. of Heart Beats 
per minute (BPM)

75 90 63 70 85 80 95 54 87 98 52 62

		  Decide whether there is a correlation between the age and the BPM. Justify your answer.

		  Draw a scatter diagram, as obtained below:

No. of Heart Beats per minute (BPM) vs Age

110

100

90

80

70

60

50

40

10 20 30 40 50 60 70

		  There is a strong correlation between the Age and the BPM; as the Age increases, the BPM 
decreases—negative correlation.

	 2	 A research was carried out to study the relationship between inflation rate and unemployment 
rate. The data were summarized as in the table below.

Inflation Rate Unemployment Rate
0.7 4.5
1.5 9.0
2.4 9.5
2.8 10.5
3.5 6.5
3.5 6.8
4.5 4.0
6.5 5.5
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(a)	 State the independent variable.
		  Inflation rate

(b)	 Compute the product moment coefficient of correlation for the data and comment on its 
value.

		  Use the formula r = 
n(∑XY) – (∑X)(∑Y)

√ [n∑X2 – (∑X)2][n∑Y2 – (∑Y)2]
 ;

Inflation Rate (X) Unemployment Rate (Y) X2 XY Y2

0.7 4.5 0.49 3.15 20.25
1.5 9.0 2.25 13.5 81
2.4 9.5 5.76 22.8 90.25
2.8 10.5 7.84 29.4 110.25
3.5 6.5 12.25 22.75 42.25
3.5 6.8 12.25 23.8 46.24
4.5 4.0 20.25 18 16
6.5 5.5 42.25 35.75 30.25

25.4 56.3 103.34 169.15 436.49

		  r	 = 
8(169.15) – (25.4)(56.3)

√ [8(103.34) – (25.4)2][8(436.49) – (56.3)2]
			   = –76.82/241.8762 = –0.3176; a weak negative correlation.

(c) 	Construct a least-squares regression equation of the two variables.
		  Regression equation: Y = a + bX; 

		  b = 
n(∑XY) – (∑X)(∑Y)

n(∑X2) – (∑X)2  = 
8(169.15) – (25.4)(56.3)

8(103.34) – (25.4)2  = –76.82/181.56 = –0.423;

		  a = ∑Y
n

 – b ∑X
n

 = 56.3
8

 + 0.423( 25.4
8 ) = 8.381.

	 The least-squares regression equation is Y = 8.381 – 0.423X.

(d)	 Compute the coefficient of determination and explain its meaning.
		  The coefficient of determination is r2 = (–0.3176)2 = 0.1009; we can say that only 10.09% of 

the variation in the unemployment rate is explained by the variation in the inflation rate.

(e)	 Estimate the inflation rate for an unemployment rate of 7.0.
		  Y = 8.381 – 0.423X  or  X = (Y – 8.381)/-0.423; if Y = 7.0, then the inflation rate is estimated 

as X = (7.0 – 8.381)/–0.423 = 3.265.

	 3	 A health researcher wishes to show that running on a treadmill can help reduce weight. Ten 
volunteers were asked to record the total number of minutes they ran on a treadmill for one 
week and the amount of weight they had lost during the week. The results are shown below.

Weight loss (kg) Total time per week (minutes)
1.0 168
2.5 285
2.0 256 (contd.)
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Weight loss (kg) Total time per week (minutes)
1.5 222
3.0 288
4.0 360
4.5 352
2.0 261
2.5 275
2.0 276

(a)	 State the dependent and independent variables.
		  Dependent variable: Weight loss
		  Independent variable: Total time per week treadmill.

(b)	 Sketch a scatter diagram of the data and describe the relationship of the two variables.
		  Scatter diagram:

Weight loss (kg) vs. Total time per week (min)
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		  There is a strong positive relationship between weight loss and total time per week on 
treadmill.

(c)	 Determine the product moment correlation coefficient between the total number of minutes 
on a treadmill per week and the amount of weight loss. Interpret your answer.

		  Use the formula r = 
n(∑XY) – (∑X)(∑Y)

√ [n∑X2 – (∑X)2][n∑Y2 – (∑Y)2]
 ;

Weight loss (kg) 
Y

Total time per week (min) 
X X2 XY Y2

1.0 168 28 224 168 1
2.5 285 81 225 712.5 6.25
2.0 256 65 536 512 4
1.5 222 49 284 333 2.25
3.0 288 82 944 864 9
4.0 360 129 600 1 440 16
4.5 352 123 904 1 584 20.25

(contd.)
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Weight loss (kg) 
Y

Total time per week (min) 
X X2 XY Y2

2.0 261 68 121 522 4
2.5 275 75 625 687.5 6.25
2.0 276 76 176 552 4
25 2 743 780 639 7 375 73

		  r	 = 10(7 375) – (2 743)(25)

√ [10(780 639) – (2 743)2][10(73) – (25)2]

			   = 5 175/5444.796  = 0.95045; a very strong positive correlation.

(d)	 Construct the linear regression equation for the data.
		  Regression equation: Y = a + bX; 

		  b = n(∑XY) – (∑X)(∑Y)
n(∑X2) – (∑X)2  = 

10(7 375) – (2 743)(25)
10(780 639) – (2 743)2  = 5 175/282 341 = 0.018;

		  a = ∑Y
n

 – b ∑X
n

 = 25
10

 – 0.018(2 743
10 ) = –2.4374.

		  The linear regression equation is Y = –2.4374 + 0.018X.

(e)	 Estimate the amount of weight loss if a person ran on a treadmill for four hours in one week.

			   If time on a treadmill is 4 hours/week, Weight loss = –2.4374 + 0.018(240) = 1.8826kg.

	 4	 A real estate agent wants to know the relationship between the size of apartment (in square 
feet) and the selling price (in $000) in a city. From a survey, he has summarized the following 
information:

Size of Apartment Price ($000)
650 105
700 115
750 120
800 160
850 165
900 180
950 210

1 000 250
1 100 280
1 200 350

(a) 	Determine the dependent variable and independent variable.
		  Dependent variable: Price ($000). 
		  Independent variable: Size of apartment (sqft.).



Simple Linear Regression and Correlation
5

(b)	 Sketch a scatter diagram showing the relationship between the two variables.

Price ($'000) vs. Size of Apartment (sqft.)

400

350

300

250

200

150

100

50
400 600 800 1000 1200 1400

		  There is a very strong positive relationship between price ($000) and size of apartment (sqft).
(c) 	Calculate the product moment correlation coefficient and interpret.

		  Use the formula r = 
n(∑XY) – (∑X)(∑Y)

√ [n∑X2 – (∑X)2][n∑Y2 – (∑Y)2]
 ;

Size of Apartment 
X

Price ($000) 
Y

X2 XY Y2

650 105 422 500 68 250 11 025
700 115 490 000 80 500 13 225
750 120 562 500 90 000 14 400
800 160 640 000 128 000 25 600
850 165 722 500 140 250 27 225
900 180 810 000 162 000 32 400
950 210 902 500 199 500 44 100

1000 250 1 000 000 250 000 62 500
1100 280 1 210 000 308 000 78 400
1200 350 1 440 000 420 000 122 500
8900 1935 8 200 000 1 846 500 431 375

		  r	 = 
10(1 846 500) – (8 900)(1 939)

√ [10(8 200 000) – (8 900)2][10(431 375) – (1 935)2]
			   = 1 243 500/1 260 545.418  = 0.986; a very strong positive correlation.

(d) 	Construct the regression equation using the least square method.
		  Regression equation: Y = a + bX; 

		  b = 
n(∑XY) – (∑X)(∑Y)

n(∑X2) – (∑X)2  = 
10(1 846 500) – (8 900)(1 935)

10(8 200 000) – (8 900)2  = 1 243 500/2 790 000 = 0.4457;

		  a = ∑Y
n

 – b ∑X
n

 = 1 935
10

 – 0.4457(8 900
10 ) = –203.173.

		  The regression equation is Y = –203.173 + 0.4457X.

(e)	 Estimate the price of an apartment with the size of 836 square feet.

		  If the size is 836 sqft, the price = –203.173 + 0.4457(836) = 169.4322 ($000).
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(f)	 Obtain the coefficient of determination and give your comment.

		  The coefficient of determination is r2 = (0.986)2 = 0.9722; we can say that 97.22% of the price 
is explained by the variation in the size of apartment.

	 5	 Suppose a police station wants to study the relationship between the time taken (in minutes) 
to reach the scene of an emergency and the distance from the station (in km). Eight recent 
emergency calls give the following data.

Time Taken (minutes) 10 7 12 9 11 15 5 6

Distance (km) 4.4 2.8 5.6 3.3 4.1 6.5 1.7 2.0

(a)	 Compute the Pearson product moment correlation coefficient. Interpret your result.

Distance (km), X Time Taken (minutes), Y X2 XY Y2

4.4 10 19.36 44 100
2.8 7 7.84 19.6 49
5.6 12 31.36 67.2 144
3.3 9 10.89 29.7 81
4.1 11 16.81 45.1 121
6.5 15 42.25 97.5 225
1.7 5 2.89 8.5 25
2 6 4 12 36

30.4 75 135.4 323.6 781

		  r	 = 
8(323.6) – (30.4)(75)

√[8(135.4) – (30.4)2][8(781) – (75)2]
			   = 308.8/314.7728 = 0.981; a very strong positive correlation.

(b) 	Use the least squares method to construct the regression equation of the time taken to reach 
the scene against the distance from the police station.

		  b = 
n(∑XY) – (∑X)(∑Y)

n(∑X2) – (∑X)2  = 
8(323.6) – (30.4)(75)

8(135.4) – (30.4)2  = 308.8/159.04 = 1.942;

		  a = ∑Y
n

 – b ∑X
n

 = 75
8

 – 1.942(30.4
8 )  = 1.9954.

		  The regression equation is Y = 1.9954 + 1.942X.

(c)	 Describe the value of b (the slope of the regression equation).

		  The value of b, 1.942 indicates that for each km distance from the police station, the time 
taken to reach the scene is about 2 minutes.

(d) 	Compute the coefficient of determination. Interpret your result.

		  The coefficient of determination is r2 = (0.981)2 = 0.9624; we can say that 96.24% of the time 
taken to reach the scene is explained by the variation in the distance from the police station.

(e) 	Estimate the time taken to reach the scene of an emergency call if the distance from the 
station is 2.5km.

		  If the distance is 2.5km, then: 

		  Time Taken = 1.9954 + 1.942(2.5) = 6.85 minutes.
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	 6	 The manager of a catering company is studying the relationship between the number of 
students at boarding schools and the winning bids of catering prices per student. 

School Number of Students Winning Bid ($)
1 300 12.00
2 350 11.80
3 400 11.50
4 450 11.50
5 500 11.00
6 550 10.80
7 600 10.50
8 650 10.50
9 700 10.30

10 750 10.20
11 800 9.80
12 850 9.60

(a) 	State the independent variable and the dependent variable.

		  Dependent variable: Winning Bid. 
		  Independent variable: Number of Students.

(b) 	Calculate the Pearson’s product moment correlation coefficient to determine whether there 
is a linear relationship between the number of students and the winning bid. 

Number of Students, X Winning Bid ($), Y X2 XY Y2

300 12.00 90 000 3 600 144
350 11.80 122 500 4 130 139.24
400 11.50 160 000 4 600 132.25
450 11.50 202 500 5 175 132.25
500 11.00 250 000 5 500 121
550 10.80 302 500 5 940 116.64
600 10.50 360 000 6 300 110.25
650 10.50 422 500 6 825 110.25
700 10.30 490 000 7 210 106.09
750 10.20 562 500 7 650 104.04
800 9.80 640  000 7 840 96.04
850 9.60 722 500 8 160 92.16

6 900 129.5 4 325 000 72 930 1404.21

		  r	 = 
12(72 930) – (6 900)(129.5)

√ [12(4 325 000) – (6 900)2][12(1 404.21) – (129.5)2]
			   = –18 390/18 556.8936 = –0.991; a very strong negative linear relationship.

(c) 	Construct the equation of the regression line of the winning bid against the number of 
students using the least square method.

		  b	 = 
n(∑XY) – (∑X)(∑Y)

n(∑X2) – (∑X)2  = 
8(323.6) – (30.4)(75)

8(135.4) – (30.4)2  = –18 390 /4 290 000 = –0.0043;
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		  a	 = ∑Y
n

 – b ∑X
n

 = 129.5
12

 + 0.0043(6 900
12 ) = 13.2645.

		  The regression equation is Y = 13.2645 – 0.0043X.

(d) 	Determine the coefficient of determination and comment on its value.

		  The coefficient of determination is r2 = (–0.991)2 = 0.9821; we can say that 98.21% of the 
winning bid is explained by the variation in the number of students.

(e)	 Estimate the winning bid if the number of students is 780.

		  If the number of students is 780, the Winning Bid = 13.2645 – 0.0043(780) = $9.91.

	 7	 Two judges of a reality TV program were evaluating nine participants. Each of the judges has 
ranked the participants from 1 to 9 in order of their performances as shown in the following 
table.

Participant 1 2 3 4 5 6 7 8 9

Judge 1 6 3 9 1 7 5 2 8 4

Judge 2 5 6 4 3 7 9 2 8 1

		  Compute the correlation between the rankings of the two judges and interpret.

		  Use the Spearman’s coefficient of rank correlation; rs = 1 – 6∑d2

n(n2 – 1)
.

Participant
Rank Difference between 

ranks, d
Difference squared, 

d2Judge 1 Judge 2
1 6 5 1 1
2 3 6 –3 9
3 9 4 5 25
4 1 3 –2 4
5 7 7 0 0
6 5 9 –4 16
7 2 2 0 0
8 8 8 0 0
9 4 1 3 9

0 64

		  rs = 1 – 6(64)/9(80) = 0.4667.
		  A value of 0.4467 indicates a rather weak relationship between two judges.

	 8	 The following table shows the grades of ten students in Advanced Calculus and Introduction 
to Computing examinations.

Student 1 2 3 4 5 6 7 8 9 10

Adv. Calculus E D D D C C C B B A

Intro. to Computing D D E C B C D A C B
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		  Determine the Spearman’s rank correlation coefficient and interpret. 

Student Adv. 
Calculus

Intro. to 
Computing

Rank Difference 
between 
ranks, d

Difference 
squared, d2Adv. 

Calculus
Intro. to 

Computing
1 E D 10 8 2 4
2 D D 8 8 0 0
3 D E 8 10 –2 4
4 D C 8 5 3 9
5 C B 5 2.5 2.5 6.25
6 C C 5 5 0 0
7 C D 5 8 –3 9
8 B A 2.5 1 1.5 2.25
9 B C 2.5 5 –2.5 6.25

10 A B 1 2.5 –1.5 2.25
0 43

		  rs = 1 – 6(43)/10(99) = 0.7394.
		  A value of 0.7394 indicates a rather strong relationship between two examinations.

	 9	 The dean of a faculty decided to set up two panels to evaluate the ten students who were 
nominated for excellence awards. The results are given below.

Student Ranking by Panel 1 Ranking by Panel 2
1 10 9
2 5 6
3 2 3
4 8 8
5 7 5
6 3 2
7 4 4
8 6 7
9 1 1

10 9 10

		  Calculate Spearman’s rank correlation coefficient. Interpret the result.

Student
Rank Difference between 

ranks, d
Difference squared, 

d2Panel 1 Panel 2
1 10 9 1 1
2 5 6 –1 1
3 2 3 –1 1
4 8 8 0 0
5 7 5 2 4
6 3 2 1 1
7 4 4 0 0

(contd.)
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Student
Rank Difference between 

ranks, d
Difference squared, 

d2Panel 1 Panel 2
8 6 7 –1 1
9 1 1 0 0

10 9 10 –1 1
0 10

		  rs = 1 – 
6∑d2

n(n2 – 1)
 = 1 – 6(10)/10(99) = 0.9394.

		  A value of 0.9394 indicates a very strong relationship between two panels.

	10	 Nine CEOs were nominated by a society for the best CEO of the year. The President and the 
Deputy President of the society were asked to rank the CEOs according to their performances. 
The results are shown in the following table.

CEO C1 C2 C3 C4 C5 C6 C7 C8 C9

Ranking by President 9 7 8 5 6 4 3 1 2

Ranking by Deputy President 8 9 5 7 6 4 1 2 3

		  Do the President and the Deputy President have similar opinions? Support your answer.

CEO
Rank Difference between 

ranks, d
Difference squared, 

d2President Deputy Pres.

C1 9 8 1 1

C2 7 9 –2 4

C3 8 5 3 9

C4 5 7 –2 4

C5 6 6 0 0

C6 4 4 0 0

C7 3 1 2 4

C8 1 2 –1 1

C9 2 3 –1 1

0 24

		  rs = 1 – 
6∑d2

n(n2 – 1)
 = 1 – 6(24)/9(80) = 0.8.

		  A value of 0.8 indicates a fairly strong relationship between two panels. Hence, the President and 
the Deputy President have quite similar opinions.



SOLUTION MANUAL

CHAPTER

Time Series Analysis 
and Forecasting10

	 1	 Describe the following terms.
(a) 	Secular trend.
		  Secular trend is a movement or trend in a series over very long periods of time (long-term 

trend).
(b) 	Irregular variation.
		  Irregular variation is a fluctuation in time series, short in duration, erratic in nature and 

follows no regularity in the occurrence pattern.
(c)	 Seasonal factors.
		  Seasonal factors are the factors that reflect the seasonal variations by repeating every year to 

the same extent.

	 2	 Identify whether the following events are trend, cyclical, seasonal or irregular component 
of time series.
(a) 	The increase in the number of customers in supermarkets during a festive season. 

Seasonal 
(b) 	The decrease in the price of mobile phones over the years as more people use them. Trend
(c) 	The high demand for foods when the economy is doing well. Irregular
(d) 	The increases in the price of fuels due to shortages. Irregular
(e)	 The increase in patients in an outpatient unit due to H1N1 outbreak. Irregular
(f)	 The increase in unemployment rate due to rising inflation. Irregular

	 3	 The following time series plot shows quarterly sales (in millions) of a steel manufacturer 
from 2007 to 2010.

Quarterly Sales of a Steel Manufacturer 
2007–2010
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		  Describe the trend and the seasonal effects of the sales.



2
Solution Manual

		  Trend: The quarterly sales of the steel manufacturer increase at a constant rate for the period 
2007–2010.

		  Seasonal effects: The plot shows seasonal quarterly sales with low sales in the first quarters and 
high sales in the third quarters.

	 4	 The following table shows the quarterly production of oil palm fruit bunches (in 000 units) 
at a private plantation for the years 2008 to 2010.

Year
Quarter

1 2 3 4
2008 9.3 14.8 16.1 12.7
2009 10.0 16.0 17.7 13.7
2010 10.9 17.3 18.4 14.7

(a)	 Sketch a time series plot for the data.

Production of Oil Palm Fruit Bunches
(in ‘000 units)
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(b)	 Compute the trend values using the moving-average method.
		  The plot shows that the cycle is repeated every four quarters or year (seasonal fluctuations). 

Hence, four-quarter moving-average would completely average out the seasonal fluctuations. 
The trend values can be computed as follows:

Year-Quarter Production  
(in 000 units)

4-quarter moving 
total

4-quarter moving-
average (Trend)

2008-1
2008-2
2008-3
2008-4
2009-1
2009-2
2009-3
2009-4
2010-1
2010-2
2010-3
2010-4

9.3
14.8
16.1
12.7
10
16

17.7
13.7
10.9
17.3
18.4
14.7

52.9
53.6
54.8
56.4
57.4
58.3
59.6
60.3
61.3

13.225
13.4
13.7
14.1

14.35
14.575

14.9
15.075
15.325
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(c)	 Calculate the quarterly seasonal indexes using the multiplicative model.
		  The quarterly seasonal indexes can be determined using the values produced in (b), then 

calculate the centred moving average and the specific seasonal as follows:

Year-
Quarter

Production 
(in 000)

(1)

4-quarter 
moving 

total

4-quarter 
moving-
average 

Centred 
moving-
average 

(2)

Specific 
Seasonal

(1)/(2)

2008-1
2008-2
2008-3
2008-4
2009-1
2009-2
2009-3
2009-4
2010-1
2010-2
2010-3
2010-4

9.3
14.8
16.1
12.7
10
16

17.7
13.7
10.9
17.3
18.4
14.7

52.9
53.6
54.8
56.4
57.4
58.3
59.6
60.3
61.3

13.225
13.4
13.7
14.1

14.35
14.575

14.9
15.075
15.325

13.3125
13.55
13.9

14.225
14.4625
14.7375
14.9875

15.2

1.2094
0.9373
0.7194
1.1248
1.2238
0.9296
0.7273
1.1382

		  Next, reorganize the specific seasonal indexes as the following, and then compute the mean 
index for each quarter:

Year
Quarter

1 2 3 4
2008 1.2094 0.9373
2009 0.7194 1.1248 1.2238 0.9296
2010 0.7273 1.1382
Mean 0.7233 1.1315 1.2166 0.9335 4.0049

Typical index 72.24 113.01 121.51 93.24 400.00

(d)	 Describe the seasonal indexes for the 2nd and 4th quarters.

		  Seasonal index for the 2nd quarter = 113.01; i.e. the production in the 2nd quarter is 13.01% 
above the typical quarter.

		  Seasonal index for the 4th quarter = 93.24; i.e. the production in the 4th quarter is 6.76% 
below the typical quarter.

(e)	 Forecast the production of oil palm fruit bunches for the 3rd quarter of 2011.

		  To prepare the data for the forecast, first the original quarterly production must be 
deseasonalized by dividing each value with the corresponding seasonal index, as shown 
below:

Year-Quarter Production  
(in 000) Seasonal index Deseasonalized 

production 
2008-1 9.3 0.7224 12.874
2008-2 14.8 1.1301 13.096
2008-3 16.1 1.2151 13.250

(contd.)
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Year-Quarter Production  
(in 000) Seasonal index Deseasonalized 

production 
2008-4 12.7 0.9324 13.621
2009-1 10 0.7224 13.843
2009-2 16 1.1301 14.158
2009-3 17.7 1.2151 14.567
2009-4 13.7 0.9324 14.693
2010-1 10.9 0.7224 15.089
2010-2 17.3 1.1301 15.308
2010-3 18.4 1.2151 15.143
2010-4 14.7 0.9324 15.766

		  The next step is to construct a trend equation for the deseasonalized data, as obtained 
below: 

		  b	 = 
∑tY – (∑Y)(∑t)/n

∑t2 – (∑t)2/n
 = 

1151.615 – (171.407)(78)/12
650 – (78)2/12

 = 
37.4695

143
 = 0.262

		  a	 = ∑Y
n

 – b ∑t
n

 = 171.407
12

 – 0.262( 78
12 ) = 14.284 – 1.703 = 12.581

		  Therefore, Y = 12.581 + 0.262t.
		  For the 3rd quarter of 2011 (t = 15), Y = 12.581 + 0.262(15) = 16.511.
		  Thus, the 3rd quarter of 2011 forecast = 16.511(1.2151) = 20.0625 (000 units). 

	 5	 The following table shows the quarterly averages of the number of rooms occupied per day at 
a budget hotel in Malacca for the period 2008–2010.

Year/Quarter Quarter 1 Quarter 2 Quarter 3 Quarter 4
2008 22 26 26 33
2009 20 24 24 31
2010 22 28 31 34

(a)	 Calculate the trend values using the moving-average method.

Year-Quarter Ave. occupied 
rooms per day

4-quarter moving 
total

4-quarter moving-
average (Trend)

2008-1
2008-2
2008-3
2008-4
2009-1
2009-2
2009-3
2009-4
2010-1
2010-2
2010-3
2010-4

22
26
26
33
20
24
24
31
22
28
31
34

107
105
103
101
99

101
105
112
115

26.75
26.25
25.75
25.25
24.75
25.25
26.25
28.00
28.75
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(b) 	Plot the time series and the trend on the same diagram.
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(c) 	Compute the seasonal indexes using the multiplicative model.

		  From (b), the centred moving average and the specific seasonal are as follows:

Year-
Quarter

Ave. occupied 
rooms per day

4-quarter 
moving 

total

4-quarter 
moving-
average 

Centred 
moving-
average

Specific 
Seasonal

2008-1
2008-2
2008-3
2008-4
2009-1
2009-2
2009-3
2009-4
2010-1
2010-2
2010-3
2010-4

22
26
26
33
20
24
24
31
22
28
31
34

107
105
103
101
99

101
105
112
115

26.75
26.25
25.75
25.25
24.75
25.25
26.25
28.00
28.75

26.500
26.000
25.500
25.000
25.000
25.750
27.125
28.375

0.9811
1.2692
0.7843
0.9600
0.9600
1.2039
0.8111
0.9868

		  Now reorganize the specific seasonal indexes as the following, and then compute the mean 
index for each quarter:

Year
Quarter

1 2 3 4

2008 0.9811 1.2692

2009 0.7843 0.9600 0.9600 1.2039

2010 0.8111 0.9868

Mean 0.7977 0.9734 0.9706 1.2365 3.9782

Typical index 80.21 97.87 97.59 124.33 400.00

(d) 	Describe the seasonal indexes for Quarter 1 and Quarter 3.

		  Seasonal index for Quarter 1 = 80.21; i.e. the average occupied rooms per day is 19.79% 
below the typical quarter.
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		  Seasonal index for Quarter 3 = 97.59; i.e. the average occupied rooms per day is 2.41% below 
the typical quarter.

(e)	 Estimate the average number of rooms occupied per day for Quarter 4 of 2011.

		  Now the original quarterly data must be deseasonalized by dividing each with the 
corresponding seasonal index, as shown below:

Year-Quarter Ave. occupied 
rooms per day Seasonal index Deseasonalized ave. 

occupied rooms 
2008-1 22 0.8021 27.428
2008-2 26 0.9787 26.566
2008-3 26 0.9759 26.642
2008-4 33 1.2433 26.542
2009-1 20 0.8021 24.935
2009-2 24 0.9787 24.522
2009-3 24 0.9759 24.593
2009-4 31 1.2433 24.934
2010-1 22 0.8021 27.428
2010-2 28 0.9787 28.609
2010-3 31 0.9759 31.766
2010-4 34 1.2433 27.347

		  Now construct a trend equation for the deseasonalized data, as obtained below: 

		  b	 = 
∑tY – (∑Y)(∑t)/n

∑t2 – (∑t)2/n
 = 

2120.616 – (321.312)(78)/12
650 – (78)2/12

 = 
32.088

143
 = 0.2244

		  a	 = ∑Y
n

 – b ∑t
n

 = 321.312
12

 – 0.2244( 78
12 ) = 26.776 – 1.4586 = 25.3174

Therefore, Y = 25.3174 + 0.2244t.
For Quarter 4 of 2011 (t = 16), Y = 25.3174 + 0.2244(16) = 28.9078.
Thus, Quarter 4 of 2011 forecast = 28.9078(1.2433) = 35.94 occupied rooms per day. 

	 6	 The production of bottled mineral water at Healthy Water over the period 2008-2010 is given 
in the following table.

Year Production (000 bottles)

Quarter 1 Quarter 2 Quarter 3 Quarter 4
2008 70 90 80 130
2009 110 140 100 150
2010 110 130 110 170

		  The trend line was computed as T = 79.24 + 5.63t, where t = 1 for the first Quarter of 2008.
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(a) 	Determine the trend values.

Year-Quarter Production  
(000 bottles)

4-quarter moving 
total

4-quarter moving-
average (Trend)

2008-1
2008-2
2008-3
2008-4
2009-1
2009-2
2009-3
2009-4
2010-1
2010-2
2010-3
2010-4

70
90
80

130
110
140
100
150
110
130
110
170

370
410
460
480
500
500
490
500
520

92.50
102.50
115.00
120.00
125.00
125.00
122.50
125.00
130.00

(b) 	Compute the seasonal index for each quarter.

		  From (b), centred moving-average and specific seasonal are obtained as follows:

Year-
Quarter

Production 
(000 bottles)

4-quarter 
moving total

4-quarter 
moving-
average 

Centred 
moving-
average

Specific 
Seasonal

2008-1
2008-2
2008-3
2008-4
2009-1
2009-2
2009-3
2009-4
2010-1
2010-2
2010-3
2010-4

70
90
80

130
110
140
100
150
110
130
110
170

370
410
460
480
500
500
490
500
520

92.50
102.50
115.00
120.00
125.00
125.00
122.50
125.00
130.00

97.50
108.75
117.50
122.50
125.00
123.75
123.75
127.50

0.8205
1.1954
0.9362
1.1429
0.8000
1.2121
0.8889
1.0196

		  Reorganize the specific seasonal indexes as the following, and compute the mean index for 
each quarter:

Year
Quarter

1 2 3 4
2008 0.8205 1.1954
2009 0.9362 1.1429 0.8000 1.2121
2010 0.8889 1.0196
Mean 0.9125 1.0813 0.8103 1.2037 4.0078

Typical index 91.07 107.92 80.87 120.14 400.00

(c) 	Interpret the seasonal index for the first and third quarters.

		  Seasonal index for Quarter 1 = 91.07; i.e. the production is 8.93% below the typical quarter.

		  Seasonal index for Quarter 3 = 80.87; i.e. the production is 19.13% below the typical quarter.
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(d) 	Forecast the production for the first quarter of 2011.

		  T = 79.24 + 5.63t; for Quarter 1 of 2011, t = 13, there for T = 152.43.
		  Thus, production for Quarter 1 of 2011 is 152.43(0.9107) = 138.818 (000 bottles).

	 7	 The number cases resolved by a lawyer were recorded quarterly as in the table below for the 
period 2007–2010.

Year Number of cases resolved

Quarter 1 Quarter 2 Quarter 3 Quarter 4
2007 4 13 5 9
2008 5 28 8 27
2009 16 17 16 15
2010 8 12 9 11

(a)	 Illustrate the above data using a time series plot.
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(b)	 Using the moving-average method, obtain the trend values. 

Year-Quarter No. of cases 
resolved

4-quarter moving 
total

4-quarter moving-
average (Trend)

2007-1
2007-2
2007-3
2007-4
2008-1
2008-2
2008-3
2008-4
2009-1
2009-2
2009-3
2009-4
2010-1
2010-2
2010-3
2010-4

4
13
5
9
5

28
8

27
16
17
16
15
8

12
9

11

31
32
47
50
68
79
68
76
64
56
51
44
40

7.75
8.00

11.75
12.50
17.00
19.75
17.00
19.00
16.00
14.00
12.75
11.00
10.00
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(c)	 Compute the seasonal index for each quarter.

		  From (b), centred moving-average and specific seasonal are obtained as follows:

Year-
Quarter

No. of cases 
resolved

4-quarter 
moving-

total

4-quarter 
moving-
average 

Centred 
moving-
average

Specific 
Seasonal

2007-1
2007-2
2007-3
2007-4
2008-1
2008-2
2008-3
2008-4
2009-1
2009-2
2009-3
2009-4
2010-1
2010-2
2010-3
2010-4

4
13
5
9
5

28
8

27
16
17
16
15
8

12
9

11

31
32
47
50
68
79
68
76
64
56
51
44
40

7.75
8.00

11.75
12.50
17.00
19.75
17.00
19.00
16.00
14.00
12.75
11.00
10.00

7.88
9.88

12.13
14.75
18.38
18.38
18.00
17.50
15.00
13.38
11.88
10.50

0.6349
0.9114
0.4124
1.8983
0.4354
1.4694
0.8889
0.9714
1.0667
1.1215
0.6737
1.1429

		  Reorganize the specific seasonal indexes and compute the mean index for each quarter:

Year Quarter

1 2 3 4
2007 0.6349 0.9114
2008 0.4124 1.8983 0.4354 1.4694
2009 0.8889 0.9714 1.0667 1.1215
2010 0.6737 1.1429
Mean 0.6583 1.3375 0.7123 1.1674 3.8755

Typical index 67.94 138.05 73.52 120.49 400.00

(d)	 Describe the seasonal index for Quarter 1 and Quarter 3.

		  Seasonal index for Q1 = 67.94; i.e. 32.06% below the typical quarter. 

		  Seasonal index for Q3 = 73.52; i.e. 26.48% below the typical quarter.

(e)	 Forecast the number of cases resolved for the third quarter of 2011.

		  The original data must be deseasonalized by dividing each value with the corresponding 
seasonal index, as shown below:

Year-Quarter No. of cases 
resolved Seasonal index Deseasonalized no. of 

cases resolved 

2007-1 4 0.6794 5.888

2007-2 13 1.3805 9.417

2007-3 5 0.7352 6.801

(contd.)
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Year-Quarter No. of cases 
resolved Seasonal index Deseasonalized no. of 

cases resolved 

2007-4 9 1.2049 7.469

2008-1 5 0.6794 7.359

2008-2 28 1.3805 20.283

2008-3 8 0.7352 10.881

2008-4 27 1.2049 22.408

2009-1 16 0.6794 23.550

2009-2 17 1.3805 12.314

2009-3 16 0.7352 21.763

2009-4 15 1.2049 12.449

2010-1 8 0.6794 11.775

2010-2 12 1.3805 8.693

2010-3 9 0.7352 12.242

2010-4 11 1.2049 9.129

		  Now construct a trend equation for the deseasonalized data, as obtained below: 

		  b	 = 
∑tY – (∑Y)(∑t)/n

∑t2 – (∑t)2/n
 = 

1817.273 – (202.422)(136)/16
1 496 – (136)2/16

 = 
96.686

340
 = 0.2844

		  a	 = ∑Y
n

 – b ∑t
n

 = 202.422
16

 – 0.2844(136
16 ) = 12.6514 – 2.4174 = 10.234

		  Therefore, Y = 10.234 + 0.2844t. 
		  For Quarter 3 of 2011 (t = 19), Y = 10.234 + 0.2844(19) = 15.6376.
		  Thus, Quarter 3 of 2011 forecast = 15.6376(0.7352) = 11.497 cases resolved. 

	 8	 A private college offers diploma programs with three semesters per year. The numbers of 
students graduated each semester for the period 2007-2010 are given in the following table.

Year Semester 1 Semester 2 Semester 3

2007 231 192 189

2008 264 222 230

2009 354 387 370

2010 350 349 331
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(a)	 Compute the trend values using the moving-average method.

Year-Semester No. of graduated 
students

3-semester moving 
total

3-semester moving 
average (Trend)

2007-1
2007-2
2007-3
2008-1
2008-2
2008-3
2009-1
2009-2
2009-3
2010-1
2010-2
2010-3

231
192
189
264
222
230
354
387
370
350
349
331

612
645
675
716
806
971

1 111
1 107
1 069
1 030

204.00
215.00
225.00
238.67
268.67
323.67
370.33
369.00
356.33
343.33

(b)	 Determine the seasonal index for each semester.

		  From (a), the specific seasonal indexes are obtained as follows:

Year-
Semester

No. of graduated 
students 

(1)

3-semester 
moving total

3-semester 
moving 

average (2) 

Specific 
Seasonal (1)/(2)

2007-1
2007-2
2007-3
2008-1
2008-2
2008-3
2009-1
2009-2
2009-3
2010-1
2010-2
2010-3

231
192
189
264
222
230
354
387
370
350
349
331

612
645
675
716
806
971

1 111
1 107
1 069
1 030

204.00
215.00
225.00
238.67
268.67
323.67
370.33
369.00
356.33
343.33

0.9412
0.8791
1.1733
0.9302
0.8561
1.0937
1.0450
1.0027
0.9822
1.0165

		  Reorganize the specific seasonal indexes and compute the mean index for each semester:

Year
Semester

1 2 3

2007 0.9412 0.8791

2008 1.1733 0.9302 0.8561

2009 1.0937 1.0450 1.0027

2010 0.9822 1.0165

Mean 1.0831 0.9832 0.9126 2.9789

Typical index 109.07 99.02 91.91 300.00
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(c)	 Describe the seasonal index for the third semester.

		  Seasonal index for Semester 3 = 91.91; i.e. the number of graduated students is 8.09% below 
the typical semester. 

(d)	 Estimate the number of students that will graduate in the second semester of 2011.

		  Deseasonalize the original data by dividing each value with the corresponding seasonal 
index, as shown below:

Year-Semester No. of graduated 
students Seasonal index Deseasonalized no. of 

graduated students 
2007-1 231 1.0907 211.79
2007-2 192 0.9902 193.90
2007-3 189 0.9191 205.64
2008-1 264 1.0907 242.05
2008-2 222 0.9902 224.20
2008-3 230 0.9191 250.24
2009-1 354 1.0907 324.56
2009-2 387 0.9902 390.83
2009-3 370 0.9191 402.57
2010-1 350 1.0907 320.89
2010-2 349 0.9902 352.45
2010-3 331 0.9191 360.13

		  Construct a trend equation for the deseasonalized data: 

		  b	 = 
∑tY – (∑Y)(∑t)/n

∑t2 – (∑t)2/n
 = 

25236.39 – (3479.26)(78)/12
650 – (78)2/12

 = 
2621.2

143
 = 18.33

		  a	 = ∑Y
n

 – b ∑t
n

 = 3479.26
12

 – 18.33( 78
12 ) = 289.938 – 119.145 = 170.793

		  Therefore, Y = 170.793 + 18.33t. 
		  For Semester 2 of 2011 (t = 14), Y = 170.793 + 18.33(14) = 427.413.
		  Thus, Semester 2 of 2011 forecast = 427.413(0.9902) = 423.224 graduated students. 

	 9	 The table below shows the monthly number of tourist arrivals to Malaysia from 2008 to 
2010.

Month 2008 2009 2010

January 1 780 134 1 871 099 1 896 918

February 1 742 468 1 613 309 1 832 300

March 1 819 689 1 975 776 2 022 590

April 1 760 326 1 883 873 1 877 934

May 1 899 148 1 894 059 1 992 277

June 1 961 355 2 108 328 2 246 084

July 1 928 082 2 003 724 2 214 092

August 1 839 235 2 030 337 2 099 485

(contd.)
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Month 2008 2009 2010

September 1 599 418 1 997 535 2 053 406

October 1 818 304 2 078 485 2 137 735

November 1 845 645 2 048 595 2 081 354

December 2 058 684 2 141 071 2 123 021

		  (Source: Tourism Malaysia, http://corporate.tourism.gov.my)

(a)	 Draw a time series plot for the data.
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(b)	 Determine the trend values for the number of tourist arrivals to Malaysia using the moving-
average method. 

Year-
Month

No. of 
tourist 
arrivals

12-month 
moving 

total

12-month 
moving-
average 
(Trend)

Year-
Month

No. of 
tourist 
arrivals

12-month 
moving-

total

12-month 
moving-
average 
(Trend)

2008-Jan
2008-Feb
2008-Mar
2008-Apr
2008-May
2008-Jun
2008-Jul
2008-Aug
2008-Sep
2008-Oct
2008-Nov
2008-Dec
2009-Jan
2009-Feb
2009-Mar
2009-Apr
2009-May
2009-Jun

1780134
1742468
1819689
1760326
1899148
1961355
1928082
1839235
1599418
1818304
1845645
2058684
1871099
1613309
1975776
1883873
1894059
2108328

22052488
22143453
22014294
22170381
22293928
22288839
22435812
22511454
22702556
23100673
23360854
23563804
23646191

1837707.33
1845287.75
1834524.50
1847531.75
1857827.33
1857403.25
1869651.00
1875954.50
1891879.67
1925056.08
1946737.83
1963650.33
1970515.92

2009-Jul
2009-Aug
2009-Sep
2009-Oct
2009-Nov
2009-Dec
2010-Jan
2010-Feb
2010-Mar
2010-Apr
2010-May
2010-Jun
2010-Jul
2010-Aug
2010-Sep
2010-Oct
2010-Nov
2010-Dec

2003724
2030337
1997535
2078485
2048595
2141071
1896918
1832300
2022590
1877934
1992277
2246084
2214092
2099485
2053406
2137735
2081354
2123021

23672010
23891001
23937815
23931876
24030094
24167850
24378218
24447366
24503237
24562487
24595246
24577196

1972667.50
1990916.75
1994817.92
1994323.00
2002507.83
2013987.50
2031518.17
2037280.50
2041936.42
2046873.92
2049603.83
2048099.67
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(c)	 Determine the seasonal index for each month.

		  From (b), the specific seasonal indexes are obtained as follows:

Year-Month
No. of tourist 

arrivals
(1)

12-month 
moving-total

12-month 
moving-average 

Centred 
moving-average 

(2)

Specific 
Seasonal  

(1)/(2)

2008-Jan
2008-Feb
2008-Mar
2008-Apr
2008-May
2008-Jun
2008-Jul

2008-Aug
2008-Sep
2008-Oct
2008-Nov
2008-Dec
2009-Jan
2009-Feb
2009-Mar
2009-Apr
2009-May
2009-Jun
2009-Jul

2009-Aug
2009-Sep
2009-Oct
2009-Nov
2009-Dec
2010-Jan
2010-Feb
2010-Mar
2010-Apr
2010-May
2010-Jun
2010-Jul

2010-Aug
2010-Sep
2010-Oct
2010-Nov
2010-Dec

1780134
1742468
1819689
1760326
1899148
1961355
1928082
1839235
1599418
1818304
1845645
2058684
1871099
1613309
1975776
1883873
1894059
2108328
2003724
2030337
1997535
2078485
2048595
2141071
1896918
1832300
2022590
1877934
1992277
2246084
2214092
2099485
2053406
2137735
2081354
2123021

22052488
22143453
22014294
22170381
22293928
22288839
22435812
22511454
22702556
23100673
23360854
23563804
23646191
23672010
23891001
23937815
23931876
24030094
24167850
24378218
24447366
24503237
24562487
24595246
24577196

1837707.33
1845287.75
1834524.50
1847531.75
1857827.33
1857403.25
1869651.00
1875954.50
1891879.67
1925056.08
1946737.83
1963650.33
1970515.92
1972667.50
1990916.75
1994817.92
1994323.00
2002507.83
2013987.50
2031518.17
2037280.50
2041936.42
2046873.92
2049603.83
2048099.67

1841497.542
1839906.125
1841028.125
1852679.542
1857615.292
1863527.125
1872802.75

1883917.083
1908467.875
1935896.958
1955194.083
1967083.125
1971591.708
1981792.125
1992867.333
1994570.458
1998415.417
2008247.667
2022752.833
2034399.333
2039608.458
2044405.167
2048238.875
2048851.75

1.0470
0.9996
0.8688
0.9814
0.9936
1.1047
0.9991
0.8564
1.0353
0.9731
0.9687
1.0718
1.0163
1.0245
1.0023
1.0421
1.0251
1.0661
0.9378
0.9007
0.9917
0.9186
0.9727
1.0963

		  Reorganize the specific seasonal indexes and compute the mean index for each month:

Year
Month

1 2 3 4 5 6 7 8 9 10 11 12

2008 1.0470 0.9996 0.8688 0.9814 0.9936 1.1047

2009 0.9991 0.8564 1.0353 0.9731 0.9687 1.0718 1.0163 1.0245 1.0023 1.0421 1.0251 1.0661

2010 0.9378 0.9007 0.9917 0.9186 0.9727 1.0963

(contd.)
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Year
Month

1 2 3 4 5 6 7 8 9 10 11 12

Mean 0.9685 0.8786 1.0135 0.9459 0.9707 1.0841 1.0317 1.0121 0.9356 1.0118 1.0094 1.0854 11.9469

Typical 
index

97.28 88.25 101.80 95.01 97.50 108.89 103.62 101.66 93.97 101.63 101.38 109.02 1200

(d) 	Use exponential smoothing with smoothing factor of 0.20 to calculate the forecast for January 
2011. Calculate the mean squared error (MSE), the mean absolute deviation (MAD) and the 
mean absolute percentage error (MAPE). 	

		  Exponential Smoothing Forecast = 0.2(latest data point) + 0.8(previous forecast)

Year-Month
No. of 
tourist 
arrivals

Exponential 
Smoothing 

Forecast

Error
(Ft-Dt)

Mean Squared 
Error (MSE) MAD MAPE 

(%)

2008-Jan
2008-Feb
2008-Mar
2008-Apr
2008-May
2008-Jun
2008-Jul

2008-Aug
2008-Sep
2008-Oct
2008-Nov
2008-Dec
2009-Jan
2009-Feb
2009-Mar
2009-Apr
2009-May
2009-Jun
2009-Jul

2009-Aug
2009-Sep
2009-Oct
2009-Nov
2009-Dec
2010-Jan
2010-Feb
2010-Mar
2010-Apr
2010-May
2010-Jun
2010-Jul

2010-Aug
2010-Sep
2010-Oct
2010-Nov
2010-Dec

1780134
1742468
1819689
1760326
1899148
1961355
1928082
1839235
1599418
1818304
1845645
2058684
1871099
1613309
1975776
1883873
1894059
2108328
2003724
2030337
1997535
2078485
2048595
2141071
1896918
1832300
2022590
1877934
1992277
2246084
2214092
2099485
2053406
2137735
2081354
2123021

1780134.00
1780134.00
1772600.80
1782018.44
1777679.95
1801973.56
1833849.85
1852696.28
1850004.02
1799886.82
1803570.26
1811985.20
1861324.96
1863279.77
1813285.62
1845783.69
1853401.55
1861533.04
1910892.03
1929458.43
1949634.14
1959214.31
1983068.45
1996173.76
2025153.21
1999506.17
1966064.93
1977369.95
1957482.76
1964441.61
2020770.08
2059434.47
2067444.57
2064636.86
2079256.49
2079675.99

37666.00
–47088.20
21692.44

–121468.05
–159381.44
–94232.15
13461.28

250586.02
–18417.18
–42074.74

–246698.80
–9774.04
249970.77

–162490.38
–38089.31
–40657.45

–246794.96
–92831.97

–100878.57
–47900.86

–119270.69
–65526.55

–144897.24
128235.21
167206.17
–56525.07
99435.95

–34794.24
–281642.39
–193321.92
–40050.53
14038.57

–73098.14
–2097.51

–43345.01

1418727556.00
2217298579.24
470561953.15

14754486684.93
25402442906.45
8879698229.32
181206043.73

62793355193.19
339192562.20

1770284161.34
60860295922.16

95531794.55
62485386151.02
26403124738.21
1450795294.05
1653027871.03

60907750487.19
8617773742.84

10176486303.61
2294492164.45

14225496569.23
4293728610.96

20995209904.99
16444268751.08
27957902270.24
3195083134.93
9887507527.13
1210639312.21

79322438104.94
37373362900.38
1604045126.93
197081567.41

5343338157.34
4399558.56

1878789889.81

37666.00
47088.20
21692.44

121468.05
159381.44
94232.15
13461.28

250586.02
18417.18
42074.74

246698.80
9774.04

249970.77
162490.38
38089.31
40657.45

246794.96
92831.97

100878.57
47900.86

119270.69
65526.55

144897.24
128235.21
167206.17
56525.07
99435.95
34794.24

281642.39
193321.92
40050.53
14038.57
73098.14
2097.51

43345.01

2.16%
2.59%
1.23%
6.40%
8.13%
4.89%
0.73%

15.67%
1.01%
2.28%

11.98%
0.52%

15.49%
8.22%
2.02%
2.15%

11.71%
4.63%
4.97%
2.40%
5.74%
3.20%
6.77%
6.76%
9.13%
2.79%
5.29%
1.75%

12.54%
8.73%
1.91%
0.68%
3.42%
0.10%
2.04%

2011-Jan Forecast	 2088344.99 16488720277.85 100161.14 5.14%
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	10	 Consider the time series data in Question 7, and answer the following:
(a) 	Estimate the four seasonal factors Ci using all the data.

		  Reorganize the time series data as follows:

Quarter Number of cases resolved Seasonal Factors
= average quarter / 4-year average2007 2008 2009 2010

1 4 5 16 8 8.25/12.6875 = 0.6502

2 13 28 17 12 17.5/12.6875 = 1.3793

3 5 8 16 9 9.5/12.6875 = 0.7488

4 9 27 15 11 15.5/12.6875 = 1.2217

4-year Average = 12.6875

(b) 	Estimate the quarterly trend factor G using all the data.

		  Estimate the quarterly trend by taking the increase in number of cases solved from Quarter 
1 of 2007 to Quarter 1 of 2010 (8 – 4 = 4) and dividing by 12 quarters, to obtain an estimate 
of G = 0.333 cases per quarter.

(c) 	Estimate the initial S value by taking the average quarterly number of cases solved in the first 
year and then subtracting two quarters’ worth of trend.

		  To estimate the initial S value, we calculate average 2007 = 7.75 and then subtract two quarters 
of trend (7.75 – 2(0.333) = 7.083) and use 7.083 as an initial estimate of previous S before 
Quarter 1 of 2007.

(d) 	Perform exponential smoothing with trend and seasonality on this data. Use 0.20 for all 
smoothing constants. What is your forecast for the first quarter of 2011?

		  Use the following equations:
		  St = α (Dt/Ct-N) + (1 – α)(St-1 + Gt-1),	 Gt = β (St – St-1) + (1 – β)Gt-1,
		  Ct = γ (Dt/St) + (1 – γ)Ct-N,	 Ft+1 = (St + Gt)Ct+1-N

		  Using 0.2 for all smoothing factors, we can calculate S, G, C and F as follows:
			   S1 = 0.2(4/0.6502) + 0.8(7.083 + 0.333) = 7.1632.
			   G1 = 0.2(7.1632 – 7.083) + 0.8(0.333) = 0.28244.
			   C1 = 0.2(4/7.1632) + 0.8(0.6502) = 0.63184.
			   F2 = (7.1632 + 0.28244)1.3793 = 10.26977.

		  In similar manner, we may calculate S, G, C and F for other values of t, as shown in the 
following table:

Year-
Quarter

Number of 
cases resolved

St Gt Ct Ft

7.083 0.333
2007-1 4 7.1632 0.2824 0.6318  
2007-2 13 7.8415 0.3616 1.4350 10.2698
2007-3 5 7.8980 0.3006 0.7257 6.1425
2007-4 9 8.0322 0.2673 1.2015 10.0162
2008-1 5 8.2223 0.2519 0.6271 5.2440
2008-2 28 10.6817 0.6934 1.6723 12.1605
2008-3 8 11.3050 0.6794 0.7221 8.2544
2008-4 27 14.0820 1.0989 1.3446 14.3987

(contd.)
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Year-
Quarter

Number of 
cases resolved

St Gt Ct Ft

7.083 0.333
2009-1 16 17.2476 1.5122 0.6872 9.5199
2009-2 17 17.0411 1.1685 1.5373 31.3715
2009-3 16 18.9994 1.3265 0.7461 13.1483
2009-4 15 18.4918 0.9596 1.2379 27.3309
2010-1 8 17.8894 0.6472 0.6392 13.3672
2010-2 12 16.3905 0.2180 1.3763 28.4970
2010-3 9 15.6994 0.0362 0.7115 12.3911
2010-4 11 14.3656 -0.2378 1.1435 19.4797

Forecast for Quarter 1 2011 9.0306



SOLUTION MANUAL

CHAPTER

Index Numbers11
	 1	 The prices of three brands of LED televisions and the quantities sold at Brothers Electrical 

for 2008 and 2010 are as follows.

Brand
2008 2010

Price ($) Quantity Price ($) Quantity
Sony 8 900 80 5 500 130
Samsung 7 500 90 4 200 170
LG 6 600 110 3 900 220

		  Using 2008 as the base year, calculate:
(a)	 Average of relative price index for the three brands for 2010.

		  Average of Relative Price Index = 
∑

p2010
p2008

 × 100

k

		  = [(5 500/8 900) × 100 + (4 200/7 500) × 100 + (3 900/6 600) × 100]/3
		  = (61.798 + 56 + 59.091)/3 = 58.963.

(b) 	Laspeyres quantity index for 2010 and interpret. 

		  Laspeyres Quantity Index = 
∑ q2010 p2008
∑ q2008 p2008

 × 100

q2008p2008 q2010p2008

80 × 8 900 = 712 000 130 × 8 900 = 1 157 000

90 × 7 500 = 675 000 170 × 7 500 = 1 275 000

110 × 6 600 = 726 000 220 × 6 600 = 1 452 000

∑ = 2 113 000 ∑ = 3 884 000

		  Laspeyres Quantity Index = (3884000/2113000) × 100 = 183.81
		  Hence, the total quantity of LED TVs sold has increased by 83.81% from 2008 to 2010.
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	 2	 The prices of three LCD TV models and their quantities sold by a company in 2009 and 2010 
are as follows.

LCD TV Model
2009 2010

Price ($) Quantity Price ($) Quantity
A 3 000 160 2 700 170
B 2 200 165 1 900 160
C 1 700 300 1 500 330

		  Using 2009 as the base year, calculate:
(a) 	Average of relative price index for the three models for 2010.

		  Average of Relative Price Index = 
∑

p2010
p2009

 × 100

k
		  = [(2 700/3 000) × 100 + (1 900/2 200) × 100 + (1 500/1 700) × 100]/3
		  = (90 + 86.364 + 88.235)/3 = 88.20.

(b) 	Laspeyres quantity index for 2010 and give your comment.

		  Laspeyres Quantity Index = 
∑ q2010 p2009
∑ q2009 p2009

 × 100

q2009p2009 q2010p2009

160 × 3 000 = 480 000 170 × 3 000 = 510  000

165 × 2 200 = 363 000 160 × 2 200 = 352 000

300 × 1 700 = 510 000 330 × 1 700 = 561 000

∑ = 1 353 000 ∑ = 1 423 000

		  Laspeyres Quantity Index = (1 423 000/1 353 000) × 100 = 105.17
		  Hence, the total quantity of three LCD TV models sold has increased by 5.17% from 2009 to 

2010.

(c)	 If the change in price for model B in 2011 is a decrease of 15% relative to 2009, find the price 
of model B for 2011.

		  If the price for model B in 2011 is decreased by 15% relative to 2009, then

			   pB, 2011	 =	 pB, 2009 × (1.00 – 0.15)
				    =	 2 200 × 0.85 = 1 870.

	 3	 A researcher has gathered the following information on the prices and quantities for a number 
of imported fruits for the years 2009 and 2010.

Fruit Quantity (000 kg) Price per kg ($)

2009 2010 2009 2010
Apple 46.8 48.1 5.37 5.55
Grape 35.5 34.9 13.55 14.28
Pear 34.4 38.2 7.99 6.99

(a) 	Using the year 2009 as the base period, calculate an unweighted average of relative quantity 
index for the year 2010 and interpret.
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		  Average of Relative Quantity Index = 
∑

q2010
q2009

 × 100

k

		  = [(48.1/46.8) × 100 + (34.9/35.5) × 100 + (38.2/34.4) × 100]/3
		  = (102.78 + 98.31 + 111.05)/3 = 104.05.

		  Hence, on the average, the quantity of fruits sold has increased by 4.05% from 2009 to 2010.

(b) 	Compute the Laspeyres quantity index for the year 2010.

		  Laspeyres Quantity Index = 
∑ q2010 p2009
∑ q2009 p2009

 × 100

q2009p2009 q2010p2009

46.8 × 5.37 = 251.316 48.1 × 5.37 = 258.297

35.5 × 13.55 = 481.025 34.9 × 13.55 = 472.895

34.4 × 7.99 = 274.856 38.2 × 7.99 = 305.218

∑ = 1007.197 ∑ = 1036.41

		  Laspeyres Quantity Index = (1036.41/1007.197) × 100 = 102.90.
		  Hence, the total quantity of fruits has increased by 2.9% from 2009 to 2010.

(c) 	Compute the Paasche price index for year 2010.

		  Paasche Price Index = 
∑ p2010 q2010
∑ p2009 q2010

 × 100

p2009q2010 p2010q2010

5.37 × 48.1 = 258.297 5.55 × 48.1 = 266.955

13.55 × 34.9 = 472.895 14.28 × 34.9 = 498.372

7.99 × 38.2 = 305.218 6.99 × 38.2 = 267.018

∑ = 1036.41 ∑ = 1032.345

		  Paasche Price Index = (1032.345/1036.41) × 100 = 99.61.
		  Hence, the total expenditure on fruits in 2010 has decreased by 0.39% (100-99.61) compared 

to 2009.

	 4	 The following table shows the price ($/kg) and quantity (kg) of four grocery items purchased 
by a family for the years 2008 and 2009.

Item
2008 2009

Price Quantity Price Quantity

Sugar 1.25 100 1.45 120

Flour 1.10 120 1.25 160

Rice 3.50 180 3.90 220

Cooking Oil 2.50 80 2.75 60
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(a) 	Determine the average of relative price index for the four items for 2009.

		  Average of Relative Price Index = 
∑

p209
p2008

 × 100

k
		  = [(1.45/1.25) × 100 + (1.25/1.10) × 100 + (3.90/3.50) × 100 + (2.75/2.5) × 100]/4
		  = (116 + 113.64 + 111.43 + 110)/4 = 112.77.

(b) 	Compute the Paasche quantity index for 2009.

		  Paasche Quantity Index = 
∑ q2009 p2009
∑ q2008 p2009

 × 100 

q2008p2009 q2009p2009

100 × 1.45 = 145 120 × 1.45 = 174

120 × 1.25 = 150 160 × 1.25 = 200

180 × 3.90 = 702 220 × 3.90 = 858

80 × 2.75 = 220 60 × 2.75 =165

∑ = 1 217 ∑ = 1 397

		  Paasche Quantity Index = (1 397/1 217) × 100 = 114.79.

(c) 	Compute the Laspeyres price index for 2009. Interpret your answer.

		  Laspeyres Price Index = 
∑ p2009 q2008
∑ p2008 q2008

 × 100 

p2008q2008 p2009q2008

1.25 × 100 = 125 1.45 × 100 = 145

1.10 × 120 = 132 1.25 × 120 = 150

3.50 × 180 = 630 3.90 × 180 = 702

2.50 × 80 = 200 2.75 × 80 = 220

∑ = 1 087 ∑ = 1 217

		  Laspeyres Price Index = (1 217/1 087) × 100 = 111.96.
		  Hence, total expenditure on four items has increased by 11.96% from 2008 to 2009.

	 5	 The table below shows the average monthly price and quantity for four models of washing 
machines of a particular brand sold by a home appliances company in 2009 and 2010.

Washing Machine Model 
(capacity)

Price ($) Quantity

2009 2010 2009 2010

A (10 kg) 790 590 125 95

B (12 kg) 890 790 220 310

C (14 kg) 1190 990 170 210

D (16 kg) 1290 1190 95 115
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(a) 	Calculate the relative price index for model B for 2010 using 2009 as the base year.

		  Relative price index (model B) = 
p2010
p2009

 × 100 = (790/890) × 100 = 88.76.

(b) 	Calculate the aggregate price index for 2010 using 2009 as the base year, and explain its 
meaning.

		  Aggregate Price Index = 
∑ p2010
∑ p2009

 × 100 

		  = �[(590 + 790 + 990 + 1 190)/(790 + 890 + 1 190 + 1 290)] × 100 = (3 560/4 160) × 100 
		  = 85.58.

		  Hence, the price of washing machines has decreased by 14.42% from 2009 to 2010.

(c) 	Compute the Laspeyres price index for 2010.

		  Laspeyres Price Index = 
∑ p2010 q2009
∑ p2009 q2009

 × 100

p2009q2009 p2010q2009

790 × 125 = 98 750 590 × 125 = 73 750

890 × 220 = 195 800 790 × 220 = 173 800

1190 × 170 = 202 300 990 × 170 = 168 300

1290 × 95 = 122 550 1190 × 95 = 113 050

∑ = 619 400 ∑ = 528 900

		  Laspeyres Price Index = (528 900/619 400) × 100 = 85.39.

(d) 	Compute the Paasche quantity index for 2010.

		  Paasche Quantity Index = 
∑ q2010 p2010
∑ q2009 p2010

 × 100

q2009p2010 q2010p2010

125 × 590 = 73 750 95 × 590 = 56 050

220 × 790 = 173 800 310 × 790 = 244 900

170 × 990 = 168 300 210 × 990 = 207 900

95 × 1190 = 113 050 115 × 1190 = 136 850

∑ = 528 900 ∑ = 645 700

		  Paasche Quantity Index = (645 700/528 900) × 100 = 122.08.

	 6	 The prices and quantities of three different consumer items for the period 2008–2010 are 
shown in the table below.

Item Price ($/kg) Quantity (kg)

2008 2009 2010 2008 2009 2010
I 14.00 17.80 26.00 2 100 3 400 4 800
II 11.80 15.20 20.40 1 900 1 740 2 000
III 12.60 14.00 20.00 1 060 980 1 400
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(a) 	Using 2009 as the base year, compute the Laspeyres price index for 2010 and interpret the 
result.

		  Laspeyres Price Index = 
∑ p2010 q2009
∑ p2009 q2009

 × 100

p2009q2009 p2010q2009

17.80 × 3400 = 60 520 26.00 × 3400 = 88 400 

15.20 × 1740 = 26 448 20.40 × 1740 = 35 496

14.00 × 980 = 13 720 20.00 × 980 = 19 600

∑ = 100 688 ∑ = 143 496

		  Laspeyres Price Index = (143 496/100 688) × 100 = 142.52.
		  Hence, total expenditure on three consumer items has increased by 42.52% from 2009 to 

2010.

(b) 	Using 2008 as the base year, compute the Paasche quantity index for 2010 and interpret the 
result.

		  Paasche Quantity Index = 
∑ q2010 p2010
∑ q2008 p2010

 × 100

q2008p2010 q2010p2010

2100 × 26.00 = 54 600 4800 × 26.00 = 124 800

1900 × 20.40 = 38 760 2000 × 20.40 = 40 800

1060 × 20.00 = 21 200 1400 × 20.00 = 28 000

∑ = 114 560 ∑ = 193 600

		  Paasche Quantity Index = (193 600/114 560) × 100 = 168.99.
		  Hence, total quantity of the three items consumed in 2010 has increased by 68.99% compared 

to 2008.

(c) 	Compute the aggregate quantity index for 2009 using 2008 as the base year.

		  Aggregate Quantity Index = 
∑ q2009
∑ q2008

 × 100

		  = [(3 400 + 1 740 + 980)/(2 100 + 1 900 + 1 060)] × 100 = (6 120/5 060) × 100 = 120.95.

(d) 	If the change in price for item I in 2011 is decreased by 10% relative to 2010, determine the 
price of the item in 2011.

		  If the price for item I in 2011 is decreased by 10% relative to 2010, then

			   pI, 2011	= pI, 2010 × (1.00 – 0.10)
				    = 26.00 × 0.90 = 23.40.
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